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Dimension 1
Composition operators

First part: dimension 1

Hardy space H2:

D = {z ∈ C ; |z | < 1} f : D→ C analytic

The space H2 = H2(D) is that of the analytic functions f on D
such that:

‖f ‖2H2 := sup
0<r<1

∫ 2π

0

|f (r eit)|2 dt

2π
< +∞

if f (z) =
∞∑
n=0

cnz
n then ‖f ‖2H2 =

∞∑
n=0

|cn|2.
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Dimension 1
Composition operators

Composition operators

Let ϕ : D→ D analytic (symbol)

Littlewood's subordination principle (1925):

f ∈ H2 =⇒ Cϕ(f ) := f ◦ ϕ ∈ H2

Hence:

Cϕ : H2 → H2

is a bounded operator, called composition operator with
symbol ϕ.
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Dimension 1
Compact composition operators

Compactness was characterized in various manners by:

B. McCluer (1980) (Carleson measure)

B. McCluer and J. Shapiro (1986) (angular derivative)

J. Shapiro (1987) (Nevanlinna counting function)

All these characterization says that Cϕ is compact i� ϕ(D)
touches the unit circle (if it happens) only �sharply� (roughly
speaking: non tangentially).
But actually, the knowledge of ϕ(D) is not su�cient (unless ϕ
is univalent).
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Dimension 1
Compact composition operators

non compact compact
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Dimension 1
Compact composition operators

Schatten classes membership was characterized by:

D. Luecking (1987) (Carleson measure)

D. Luecking and K. Zhu (1992) (Nevanlinna counting
function)
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Dimension 1
Approximation numbers

Approximation numbers

H Hilbert space; T : H → H operator; its n-th approximation
number is:

an(T ) = inf
rkR<n

‖T − R‖

Then

a1(T ) = ‖T‖ ≥ a2(T ) ≥ · · · ≥ an(T ) ≥ an+1(T ) ≥ · · ·

They measure how much an operator is compact:

T compact ⇐⇒ an(T )−−→
n→∞

0

T ∈ Sp(H) ⇐⇒
∑
n

[an(T )]p <∞
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Dimension 1
Approximation numbers

GOAL

Give estimates on approximation numbers of composition
operators
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Dimension 1
Lower estimates: no fast decay

Lower estimates: no fast decay

Approximation numbers of composition operators cannot be
arbitrary small:

Proposition

For every symbol ϕ, there exists c > 0 such that:

an(Cϕ) & C e−cn = rn 0 < r < 1

First stated by Parfenov (1988) under a �cryptic� form;
explicitely by LQR (2012).
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Dimension 1
Lower estimates: no fast decay

That use the fact that, if Cϕ is compact, we can assume that
ϕ(0) = 0 and ϕ′(0) 6= 0, and then the non-zero eigenvalues of
Cϕ are [ϕ′(0)]n, n = 0, 1, . . ., and:

Weyl Lemma

If T : H → H is a compact operator on a Hilbert space H and
if (λn)n≥1 is the sequence of the eigenvalues of T , numbered
in non-increasing order, then:

n∏
k=1

ak(T ) ≥
n∏

k=1

|λk |.
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Dimension 1
Lower estimates: no fast decay

Note: When ‖ϕ‖∞ < 1, it is easy to see:

an(Cϕ) . ‖ϕ‖n∞

It is actually the only case:

Theorem LQR 2012

If an(Cϕ) . rn with r < 1, then ‖ϕ‖∞ < 1.
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Dimension 1
Lower estimates: no fast decay

Two proofs:

The �rst proof uses Pietsch's factorization theorem

The second one uses the Green capacity of ϕ(D)
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Dimension 1
Lower estimates: no fast decay

The �rst proof uses Pietsch's factorization theorem

Pietsch's factorization theorem is used for getting a measure µ
supported by a compact set K ⊆ ϕ(D) such that, for the
restriction operator Rµ : H → L2(µ), one has an(Cϕ) & an(Rµ).

The second one uses the Green capacity of ϕ(D)
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Dimension 1
Lower estimates: no fast decay

The �rst proof uses Pietsch's factorization theorem

Rµ is more tractable than Cϕ and it can be proved (assuming
ϕ(0) = 0 for simplicity) that:

‖ϕ‖∞ > r =⇒ an(Rµ) &
sn√
n

with s = s(r)−−→
r→1

1.

The second one uses the Green capacity of ϕ(D)
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Dimension 1
Lower estimates: no fast decay

The �rst proof uses Pietsch's factorization theorem

The second one uses the Green capacity of ϕ(D)

Theorem LQR 2014

If ‖ϕ‖∞ < 1, one has:

lim
n→∞

[an(Cϕ)]1/n = e−1/Cap [ϕ(D)]

and (assuming ϕ(0) = 0 for simplicity):

Cap [ϕ(D)]−−−−→
‖ϕ‖∞→1

+∞.
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Dimension 1
Lower estimates: no fast decay

The �rst proof uses Pietsch's factorization theorem

The second one uses the Green capacity of ϕ(D)

Hence:

an(Cϕ) . rn implies ‖ϕ‖∞ < 1.
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Dimension 1
Lower estimates: no fast decay

The �rst proof uses Pietsch's factorization theorem

The second one uses the Green capacity of ϕ(D)

The proof is based on a theorem of H. Widom:

Theorem H. Widom (1972)

Let K be a compact set of D and

rn = sup
f ∈H∞, ‖f ‖∞≤1

inf
R
‖f − R‖C(K),

where the in�mum is taken over all rational functions R with
at most n poles, all outside of D. Then:

lim
n→∞

r 1/nn = e−1/Cap (K).
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The �rst proof uses Pietsch's factorization theorem

The second one uses the Green capacity of ϕ(D)

The proof is based on a theorem of H. Widom:

Theorem H. Widom (1972)

Let K be a compact set of D and

rn = sup
f ∈H∞, ‖f ‖∞≤1

inf
R
‖f − R‖C(K),

where the in�mum is taken over all rational functions R with
at most n poles, all outside of D. Then:

lim
n→∞

r 1/nn = e−1/Cap (K).

and of the fact (communicated by A. Ancona) that if V is an
open connected set such that V ⊂ D, then
Cap (V ) = Cap (V ).
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Dimension 1
Lower estimates: slow decay

Lower estimates: slow decay

If an(Cϕ) cannot decay fast, it can decay arbitrarily slowly:

Theorem LQR 2012

For every vanishing non-increasing sequence (εn)n≥1, there
exists a symbol ϕ such that:

an(Cϕ) & εn for all n ≥ 1.

That allows to have compact composition operators which are
in no Schatten class Sp, p <∞. This question of Sarason
(1988) was �rst solved by Carroll and Cowen in 1991.
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Dimension 1
Lower estimates: slow decay

However, one has a better result:

Theorem H. Que�élec - K. Seip 2015

For every function u : R+ → R+ such that u(x)↘ 0 as
x ↗∞ and u(x2)/u(x) bounded below, there exists a
compact composition operator such that:

an(Cϕ) ≈ u(n)

It is actually a corollary of a result which will be stated later.
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Dimension 1
More speci�c lower etimates

More speci�c lower estimates

If u = (u1, . . . , un) is a �nite sequence of complex numbers, its
interpolation constant Mu is the smallest M > 0 such that:

∀w1, . . . ,wn with |wj | ≤ 1 ∃f ∈ H∞ with ‖f ‖∞ ≤ M s.t.

f (uj) = wj , j = 1, . . . , n.
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Dimension 1
More speci�c lower estimates

Proposition LQR 2013

Let ϕ a symbol, u = (u1, . . . , un) ∈ Dn,
such that the vj = ϕ(uj)'s are distinct, and v = (v1, . . . , vn).
Set:

µ2n = inf
1≤j≤n

1− |uj |2

1− |ϕ(uj)|2
·

Then:

an(Cϕ) & µn M
−2
v

.
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1≤j≤n

‖Kϕ(uj )‖2

‖Kuj‖2

where Kz is the reproducing kernel at z
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Dimension 1
More speci�c lower estimates

That follows from the fact that if K̃uj = Kuj/‖Kuj‖, then:

M−1
u

( n∑
j=1

|cj |2
)1/2
≤
∥∥∥ n∑

j=1

cj K̃uj

∥∥∥
H2
≤ Mu

( n∑
j=1

|cj |2
)1/2

.
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Dimension 1
More speci�c lower estimates

By a suitable choice of u1, . . . , un, we get then:

Theorem LQR 2013

Assume that ϕ(]− 1, 1[) ⊆ R and that 1− ϕ(r) ≤ ω(1− r),
0 ≤ r < 1, where ω is continuous, increasing, sub-additive,
vanishes at 0, and ω(h)/h−−→

h→0
∞.Then:

an(Cϕ) & sup
0<s<1

e−20/(1−s)

√
ω−1(asn)

asn

where a = 1− ϕ(0) > 0.
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Dimension 1
Lower estimates: Examples

Examples

Lens maps

For 0 < θ < 1, the lens map λθ is the conformal representation
(suitably determined) of D onto the lens domain below:

One has ω−1(h) ≈ h1/θ; so we get:

an(Cλθ) ≥ α e−C
√
n

where α,C > 0 depends only on θ.
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Dimension 1
Lower estimates: Examples

Corollary LLQR 2013

If ϕ is univalent and ϕ(D) contains an angular sector centered
on the unit cercle and with opening πθ, 0 < θ < 1, then:

an(Cϕ) & e−C
√
n.

with C > 0 depending only on θ.
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Dimension 1
Lower estimates: Examples

Examples

Cusp map

The cusp map χ is the conformal representation (suitably
determined) of D onto the cusp domain below:

One has ω−1(h) ≈ e−C0/h; so wet get:

an(Cχ) & e−C n/ log n
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Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp.

However, let ϑ > 0. For ε = εϑ > 0
small enough, let Vε = {z ∈ C ; Re z > 0 and |z | < ε},

fϑ(z) = z(− log z)ϑ for z ∈ Vε

and ςϑ = exp(−fϑ ◦ gϑ),

where gϑ is a conformal representation of D onto Vε.

Then ω(t) = t(log 1/t)ϑ and an(Cςϑ) & n−ϑ/2 so that gives

Cςϑ ∈ Sp ⇒ p > 2/ϑ

though actually Cςϑ ∈ Sp ⇔ p > 4/θ.

Daniel Li Composition operators



Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp. However, let ϑ > 0. For ε = εϑ > 0
small enough, let Vε = {z ∈ C ; Re z > 0 and |z | < ε},

fϑ(z) = z(− log z)ϑ for z ∈ Vε

and ςϑ = exp(−fϑ ◦ gϑ),

where gϑ is a conformal representation of D onto Vε.

Then ω(t) = t(log 1/t)ϑ and an(Cςϑ) & n−ϑ/2 so that gives

Cςϑ ∈ Sp ⇒ p > 2/ϑ

though actually Cςϑ ∈ Sp ⇔ p > 4/θ.

Daniel Li Composition operators



Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp. However, let ϑ > 0. For ε = εϑ > 0
small enough, let Vε = {z ∈ C ; Re z > 0 and |z | < ε},

fϑ(z) = z(− log z)ϑ for z ∈ Vε

and ςϑ = exp(−fϑ ◦ gϑ),

where gϑ is a conformal representation of D onto Vε.

Then ω(t) = t(log 1/t)ϑ and an(Cςϑ) & n−ϑ/2 so that gives

Cςϑ ∈ Sp ⇒ p > 2/ϑ

though actually Cςϑ ∈ Sp ⇔ p > 4/θ.

Daniel Li Composition operators



Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map
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Upper estimates

Proposition (Parfenov 1988)

For every symbol ϕ:

[an(Cϕ)]2 . sup
0<h<1, ξ∈∂D

1

h

∫
S(ξ,h)

|B(z)|2 dmϕ(z)

where B is a Blaschke product with less than n zeroes,
S(ξ, h) = D ∩ D(ξ, h) and mϕ is the pull-back measure of m
(the normalized Lebesgue measure on ∂D) by ϕ.

Follows from: 1) the subspace BH2 has codimension ≤ n − 1,
so cn(Cϕ) ≤ ‖Cϕ|BH2‖ where cn(Cϕ) is the Gelfand number;

and: 2) an(Cϕ) = cn(Cϕ) (because H2 is a Hilbert space).

We deduce from this proposition the following theorem.
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Theorem LQR 2013

Assume that ϕ is continuous on D and that ϕ(D) is contained
in a polygon with vertices ϕ(eit1), . . . , ϕ(eitN ). Then, if:

|ϕ(eit)− ϕ(eitj )| & $(|t − tj |),

for |t − t0| small enough and j = 1, . . . ,N , and $ is
continuous, increasing, sub-additive, vanishes at 0, and
$(h)/h−−→

h→0
∞, one has, for some constants κ, σ > 0:

an(Cϕ) .

√
$−1(κ 2−kn)

κ 2−kn
,

where kn is the largest integer such that N k dk < n and dk is
the integer part of σ log κ 2−n

$(κ 2−n)
+ 1.
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Examples

Lens maps
For λθ, one has N = 2, $−1(h) ≈ h1/θ, dk ≈ k and kn ≈

√
n;

hence, for β, c > 0 depending only on θ:

Cusp map
For the cusp map χ, one has N = 1, $−1(h) = e−1/h, dk ≈ 2k

and 2kn ≈ n/ log n; hence:
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hence, for β, c > 0 depending only on θ:

an(Cλθ) ≤ β e−c
√
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For λθ, one has N = 2, $−1(h) ≈ h1/θ, dk ≈ k and kn ≈

√
n;

hence, for β, c > 0 depending only on θ:

α e−C
√
n ≤ an(Cλθ) ≤ β e−c

√
n.

Remark. Similarly, H. Que�élec and K. Seip (2015) showed
that if

ϕ(z) =
1

1 + (1− z)α
, 0 < α < 1,

then:

e−π(1−α)
√

(2n)/α . an(Cϕ) . e−π(1−α)
√

n/(2α)

Cusp map
For the cusp map χ, one has N = 1, $−1(h) = e−1/h, dk ≈ 2k

and 2kn ≈ n/ log n; hence:
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√
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Cusp map
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and 2kn ≈ n/ log n; hence:
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The example of lens maps can be generalized as follows:

Theorem LQR 2013

If ϕ(D) is contained in a polygon P with vertices on the unit
circle, then, for constants α, β > 0 depending only of P , one
has:

an(Cϕ) ≤ α e−β
√
n.

For the proof, we may assume that ϕ is conformal from D
onto P and we use the Schwarz-Christo�el formula, which
allows to take $(h) = hθ in the previous theorem (where πθ is
the greatest angle of the polygon).

Remark. This should be compared with the previous result
return
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Spread lens maps
In the two previous examples, the composition operators are in
all the Schatten classes Sp, p > 0. For the following example,
it is not the case.

(Theorem LLQR 2013)

Let λθ be a lens map and φθ(z) = λθ(z) exp
(
− 1+z

1−z

)
. Then:

an(Cφθ) . (log n/n)1/2θ n = 2, 3, . . .
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We get that Cφθ ∈ Sp for p > 2θ.

However, with Luecking's characterization, one can show:

Theorem LLQR 2013

Cφθ ∈ Sp ⇔ p > 2θ.

Open question

Find a lower estimate for an(Cφθ).
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Remark

Our proofs for the lower and upper estimates give in particular
the following remark.

If B is a Blaschke product, (BH2)⊥ is the model space
associated to B . One has:
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Remark

For any symbol ϕ:

an(Cϕ) ≥ sup
u1,...,un∈(0,1)

inf
f ∈(BH2)⊥

‖f ‖=1

‖C ∗ϕf ‖

where the supremum is taken over all Blaschke products with
n zeros on the real interval (0, 1).

an(Cϕ) ≤ inf
B

sup
f ∈BH2

‖f ‖=1

‖Cϕf ‖

where the in�mum is taken over all Blaschke products with
less than n zeros.
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Two sides estimates

To end this part, we state results of H. Que�élec and K. Seip
with two sides estimates.

Notation. Let u : D→ R be in the disk algebra (i.e.
continuous on D and analytic in D) such that u(z̄) = u(z); let
ũ its harmonic conjugate, and:

ϕu = exp(−u − i ũ).

One assumes that, if U(t) = u(eit), U is increasing on[0, π],
U(0) = 0, and that U is smooth, except perhaps at t = 0.
Moreover, one assumes that:

hu(t) :=

∫ π

t

U(x)

x2
dx −−→

t→0+
∞

to ensure that Cϕu is compact.
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Then:

Theorem (smooth case) H. Que�élec - K. Seip 2015

Assume that, for some c > 1 and C > 0, one has, for t small
enough:

t U ′(t)

U(t)
≤ 1 +

c

| log t|
and

U(t)

t hu(t)
≤ C

| log t|(log | log t|)

Then:

an(Cϕu) ≈ 1√
hu(e−

√
n)
·

return
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Then:

Theorem (smooth case) H. Que�élec - K. Seip 2015

Assume that, for some c > 1 and C > 0, one has, for t small
enough:

t U ′(t)

U(t)
≤ 1 +

c

| log t|
and

U(t)

t hu(t)
≤ C

| log t|(log | log t|)

These assumptions mean that ϕu is tangentially smooth at 1

Then:

an(Cϕu) ≈ 1√
hu(e−

√
n)
·

return
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For the second result, we need a bit more notation. Writing:

U(t) = e−ηU(| log t|) for 0 < t ≤ 1 and U(t) ≤ 1/e,

one de�nes ωU by the implicit equation:

ηU
(
x/ωU(x)

)
= ωU(x)

for x ≥ 0 such that ηU(x) ≥ 1.
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Then:

Theorem (sharp cusp case) H. Que�élec - K. Seip 2015

Assume that:

η′U(x)

ηU(x)
= o (1/x) as x →∞;

Then:

an(Cϕu) = exp

[
−
(
π2

2
+ o (1)

)
n

ωU(n)

]
·

The proofs are rather involved.
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Second part: dimension d ≥ 2

Two domains are classical:

the open ball
Bd = {z = (z1, . . . , zd) ∈ Cd ; |z1|2 + · · ·+ |zd |2 < 1}

the polydisc Dd

The Hardy space H2(Ω) (with Ω = Bd or Dd) is de�ned
similarly as in dimension 1.

Caution

Not all symbols ϕ : Ω→ Ω give a bounded composition
operator on H2(Ω).

In the sequel, we shall assume the symbol ϕ is such that ϕ(Ω)
has non-void interior.
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Lower estimates

One has, as in dimension 1:

Proposition BLQR 2015

Let Cϕ : H2(Ω)→ H2(Ω) be compact (Ω = Bd or Dd).
Let u = (u1, . . . , un) ∈ Ωn and vj = ϕ(uj) be distinct. Let Mv

be the interpolation constant of v = (v1, . . . , vn). Then,
setting:

µ2n = inf
1≤j≤n

d∏
k=1

1− |uj ,k |2

1− |vj ,k |2
,

one has:

an(Cϕ) & µnM
−2
v

.
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Lower estimates

Then:

Theorem BLQR 2015

Let Cϕ : H2(Ω)→ H2(Ω) be compact (Ω = Bd or Dd). Then,
for some constant C > 0, one has:

an(Cϕ) & e−Cn
1/d

.

The interesting point is the dependence with the dimension d .
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Lower estimates

It is obtained with a good choice of the sequence (u1, . . . , un)
in the previous proposition, and using estimates on its
interpolation constant due to:

P. Beurling when Ω = Dd ;

B. Berndtsson (1985) when Ω = Bd .
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Lower estimates

Generalization

A bounded symmetric domain of Cd is a bounded open convex
and circled subset Ω of Cd such that for every point a ∈ Ω,
there is an involutive bi-holomorphic map u : Ω→ Ω such that
a is an isolated �xed point of u (equivalently, as shown by
J.-P. Vigué: u(a) = a and u′(a) = −id).

The unit ball Bd and the polydisk Dd are examples of bounded
symmetric domains.
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Dimension d ≥ 2
Lower estimates

Hardy space

The Shilov boundary SΩ of Ω is the smallest closed set
F ⊆ ∂Ω such that

sup
z∈Ω

|f (z)| = sup
z∈Ω
|f (z)|

for every function f holomorphic in a neighbourhood of Ω. It
is also the set of extreme points of Ω.

The Shilov boundary of Bd is its usual boundary Sd−1.
But the Shilov boundary of the bidisk D2 is

{(z1, z2) ∈ C2 |z1| = |z2| = 1},
though
∂D2 = {(z1, z2) ∈ C2 ; |z1|, |z2| ≤ 1 and |z1| = 1 or |z2| = 2}.
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Dimension d ≥ 2
Lower estimates

There is a unique probability measure σ on SΩ which is
invariant by the automorphisms u of Ω such that u(0) = 0.

The Hardy space H2(Ω) is the space of analytic functions
f : Ω→ C such that:

‖f ‖2 =

(
sup

0<r<1

∫
SΩ

|f (rξ)|2 dσ(ξ)

)1/2

<∞ .

Daniel Li Composition operators



Dimension d ≥ 2
Lower estimates

We have:

Theorem BLQR 2015

Let Ω be a bounded symmetric domain of Cd and
Cϕ : H2(Ω)→ H2(Ω) compact. Then, for some constant
C > 0, one has:

an(Cϕ) & e−Cn
1/d

.
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Dimension d ≥ 2
Lower estimates

That use Weyl Lemma and:

Theorem (D. Clahane 2005)

Let Ω be a bounded symmetric domain of Cd and ϕ : Ω→ Ω
be a holomorphic map inducing a compact composition
operator Cϕ : H2(Ω)→ H2(Ω). Then ϕ has a unique �xed
point z0 ∈ Ω and the spectrum of Cϕ consists of 0, and all
possible products of eigenvalues of the derivative ϕ′(z0).

However, the �rst proof give more information to construct
examples.
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Dimension d ≥ 2
Upper estimates

Upper estimates

Theorem BLQR 2015

Let Ω = Bd1 × · · · × BdN , d1 + · · ·+ dN = d .

Open question

Does that hold for Ω a general bounded symmetric domain?

Open question

Does the converse hold?
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Dimension d ≥ 2
Upper estimates

In the case of the polydisk Ω = Dd , and �diagonal� symbols,
one has:

Theorem BLQR 2015

Let ϕ1, . . . , ϕD : D→ D be symbols inducing compact
composition operators on H2(D), and let:

ϕ(z1, . . . , zd) =
(
ϕ1(z1), . . . , ϕd(zd)

)
.

Then, for Cϕ : H2(Dd)→ H2(Dd), one has:

an(Cϕ) ≤
(
2d−1

d∏
j=1

‖Cϕj
‖
)

inf
n1···nd≤n

[
an1(Cϕ1)+· · ·+and (Cϕd

)
]
.
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Dimension d ≥ 2
Upper estimates

To prove that, for �xed n1, . . . , nd such that n1 · · · nd ≤ n, one
consider, for each j = 1, . . . , d , an operator

Rj : H2(D)→ H2(D)

with rank < nj such that ‖Cϕj
− Rj‖ = anj (Cϕj

).

One de�nes R : H2(Dd)→ H2(Dd) by:

R(zα) = R1(zα11 ) · · ·Rd(zαd
d ) ,

where α = (α1, . . . , αd).

Then R has rank < n1 · · · nd ≤ n and ‖Cϕ − R‖ is less than
the upper estimate given in the theorem.
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Dimension d ≥ 2
Examples

Examples

Multi-lens maps

Let 0 < θ1, . . . , θd < 1 and λθ1 , . . . , λθd be the associated lens
maps. Then, if:

ϕ(z1, . . . , zd) =
(
λθ1(z1), . . . , λθd (zd)

)
,

one has:

e−αn
1/(2d)

. an(Cϕ) . e−βn
1/(2d)

.
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Dimension d ≥ 2
Examples

Multi-cusp map

Let χ be the above cusp map, and
ϕ(z1, . . . , zd) =

(
χ(z1), . . . , χ(zd)

)
. Then:

e−αn
1/d/ log n . an(Cϕ) . e−βn

1/d/ log n.
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Dimension d ≥ 2
Examples

Another type of example

Let c1, . . . , cd > 0 such that c1 + · · ·+ cd ≤ 1 and
ϕ(z1, . . . , zd) = (c1z1 + · · ·+ cdzd , 0, . . . , 0). Then:

an(Cϕ) ≈ (c1 + · · ·+ cd)n

n(d−1)/4
·

In particular, if c1 + · · ·+ cd = 1, then Cϕ is compact, and

Cϕ ∈ Sp ⇔ p > 4/(d − 1).

Daniel Li Composition operators



Dimension d ≥ 2
Examples

Another type of example

Let c1, . . . , cd > 0 such that c1 + · · ·+ cd ≤ 1 and
ϕ(z1, . . . , zd) = (c1z1 + · · ·+ cdzd , 0, . . . , 0). Then:

an(Cϕ) ≈ (c1 + · · ·+ cd)n

n(d−1)/4
·

In particular, if c1 + · · ·+ cd = 1, then Cϕ is compact, and

Cϕ ∈ Sp ⇔ p > 4/(d − 1).

Daniel Li Composition operators



Dimension d ≥ 2
Examples

This example is called by Hervé �toy example�

: this is the
�Toy Story�
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In�nite dimension
Introduction

Third part: in�nite dimension

Introduction

We saw that:

Theorem

For Cϕ : H2(Dd)→ H2(Dd), one has:

always an(Cϕ) & e−C n1/d

if ‖ϕ‖∞ < 1, then an(Cϕ) . e−c n
1/d

As e−C n1/d −−→
d→∞

e−C > 0, one might believe that there is no

compact composition operator in in�nite dimension.

Actually, it is not the case, as we shall see.
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In�nite dimension
Hardy space

Hardy space

We consider the in�nite polydisk D∞.
We have to de�ne the Hardy space H2.

It is natural to ask that it is the space of all functions f with

(1) f (z) =
∑
α≥0

cαz
α and ‖f ‖22 :=

∑
α≥0

|cα|2 <∞ ,

where α = (αj)j≥1, z = (zj)j≥1 and zα =
∏

j≥1 z
αj

j .

If one asks absolute convergence in (1), we should have∑
α≥0 |zα|2 <∞.
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In�nite dimension
Hardy space

Since one has the Euler type formula:∑
α≥0

|zα|2 =
∞∏
j=1

1

1− |zj |2

we get that:

∞∑
j=1

|zj |2 <∞ .

Hence it is natural to consider Ω2 = D∞ ∩ `2 instead of the
whole polydisk.
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In�nite dimension
Hardy space

Actually, we will work with Ω1 = D∞ ∩ `1 (which is an open
subset of `1) because of the following proposition:

Proposition LQR 2016

Let ϕj : D→ D be analytic, j = 1, 2, . . . and
ϕ(z) =

(
ϕj(zj)

)
j≥1. Then ‖Cϕ(f )‖2 <∞ for all ‖f ‖2 <∞ if

and only if:

∞∑
j=1

|ϕj(0)| <∞ .

Hence H2 = H2(Ω1) will be the space of all f : Ω1 → C such
that ‖f ‖2 <∞.
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In�nite dimension
Composition operators

Composition operators
We will say that ϕ is truly in�nite-dimensional if
ϕ′(a) : `1 → `1 is one-to-one for some a ∈ Ω1.

First, if ϕ(Ω1) remains far from ∂Ω1, one has:

Theorem LQR 2016

Let ϕ : Ω1 → Ω1 truly in�nite-dimensional such that
ϕ(Ω1) ⊂ Ω1 is compact. Then:

1) Cϕ : H2(Ω1)→ H2(Ω1) is bounded, and even compact;

2) ϕ′(0) : `1 → `1 is compact;

3) for all p > 0, one has:
∞∑
n=1

1[
log
(
1/an(Cϕ)

)]p =∞.
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In�nite dimension
Composition operators

Caution

There exist compact composition operators
Cϕ : H2(Ω1)→ H2(Ω1) such that ϕ(Ω1) is unbounded in `1.

One can take a diagonal symbol.

Remark. Assuming ϕ(Ω1) compact in `1 instead compact in
Ω1 is not su�cient.

Example: ϕ(z) =
(1 + z1

2
, 0, 0, . . .

)
.
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In�nite dimension
Composition operators

Proposition LQR 2016

Let |λ1|, |λ2|, . . . < 1 and ϕ(z) = (λjzj)j≥1. Then ϕ : Ω1 → Ω1

and, for every p > 0 :

(λj)j≥1 ∈ `p ⇒ Cϕ ∈ Sp.

In particular, there exist truly in�nite-dimensional symbols on
Ω1 such that Cϕ is in all Schatten classes Sp, p > 0.

Daniel Li Composition operators



In�nite dimension
Composition operators

Theorem LQR 2016

For every 0 < δ < 1, there exist compact composition
operators on H2(Ω1) with truly in�nite-dimensional symbol
such that:

an(Cϕ) . exp
[
− c eb(log n)δ

]
.
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T�h��a��t'	s �a��l �l F�o �l �k�	s !
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