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Dimension 1
Composition operators

First part: dimension 1

Hardy space H?:
D={zeC;|z| <1} f:D— C analytic

The space H? = H?(ID) is that of the analytic functions fon I
such that:

21
. dt
122 = sup / (et & < oo

0<r<1 2T
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Dimension 1
Composition operators

First part: dimension 1

Hardy space H?:
D={zeC;|z| <1} f:D— C analytic

The space H? = H?(ID) is that of the analytic functions fon I

such that:
27
L dt
£l = sup [ IF(ref)P 57 < o
0<r<1 Jo 2T
if f(z) =) caz" then ||f|l7e =D |cal”.
n=0 n=0
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Dimension 1
Composition operators

Composition operators

Let p: D — D analytic (symbol)
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Dimension 1
Composition operators

Composition operators
Let p: D — D analytic (symbol)

Littlewood's subordination principle (1925):

feH = C,(f):=FfopeH?
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Dimension 1
Composition operators

Composition operators
Let p: D — D analytic (symbol)
Littlewood's subordination principle (1925):
feH = C,(f):=FfopeH?
Hence:
C,: H* — H?

is a bounded operator, called composition operator with
symbol ¢.
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Dimension 1

Compact composition operators

Compactness was characterized in various manners by:
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Dimension 1

Compact composition operators

Compactness was characterized in various manners by:

@ B. McCluer (1980) (Carleson measure)
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Dimension 1
Compact composition operators

Compactness was characterized in various manners by:

@ B. McCluer (1980) (Carleson measure) for H?(By);
certainly known before for d =1
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Dimension 1
Compact composition operators

Compactness was characterized in various manners by:

@ B. McCluer (1980) (Carleson measure)
@ B. McCluer and J. Shapiro (1986) (angular derivative)
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Compact composition operators

Compactness was characterized in various manners by:

@ B. McCluer (1980) (Carleson measure)
@ B. McCluer and J. Shapiro (1986) (angular derivative)
@ J. Shapiro (1987)  (Nevanlinna counting function)
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Dimension 1
Compact composition operators

Compactness was characterized in various manners by:
@ B. McCluer (1980) (Carleson measure)
@ B. McCluer and J. Shapiro (1986) (angular derivative)
@ J. Shapiro (1987)  (Nevanlinna counting function)

All these characterization says that C, is compact iff ¢(ID)
touches the unit circle (if it happens) only “sharply” (roughly
speaking: non tangentially).
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Dimension 1
Compact composition operators

Compactness was characterized in various manners by:

@ B. McCluer (1980) (Carleson measure)
@ B. McCluer and J. Shapiro (1986) (angular derivative)
@ J. Shapiro (1987)  (Nevanlinna counting function)

All these characterization says that C, is compact iff ¢(ID)
touches the unit circle (if it happens) only “sharply” (roughly
speaking: non tangentially).

But actually, the knowledge of ¢(ID) is not sufficient (unless ¢
is univalent).
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Dimension 1

Compact composition operators
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Dimension 1

Compact composition operators

Schatten classes membership was characterized by:
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Dimension 1
Compact composition operators

Schatten classes membership was characterized by:

@ D. Luecking (1987) (Carleson measure)
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Dimension 1
Compact composition operators

Schatten classes membership was characterized by:

@ D. Luecking (1987) (Carleson measure)

@ D. Luecking and K. Zhu (1992)  (Nevanlinna counting
function)
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Dimension 1
Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:
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Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:

a,(T)= inf ||T =R

rk R<n
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Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:

a,(T)= inf ||T =R

rk R<n
Then
a(T) =Tl = a(T) > >an(T) > ap1(T) = -
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Dimension 1
Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:

a,(T)= inf ||T =R

rk R<n

Then
a(T)=|Tll > a(T) > >a)(T)>a(T) >

They measure how much an operator is compact:
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Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:

a,(T)= inf ||T =R

rk R<n
Then
a(T) =Tl = a(T) > >an(T) > ap1(T) = -

They measure how much an operator is compact:

T compact <= a,(T)—0

n—oo
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Dimension 1
Approximation numbers

Approximation numbers

H Hilbert space; T: H — H operator; its n-th approximation
number is:

a,(T)= inf ||T =R

rk R<n

Then
a(T) =Tl = a(T) == an(T) > ana(T) = - -
They measure how much an operator is compact:

T compact <= a,(T)—0

n—oo

T e Sy( — Z[an )P < oo
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Dimension 1

Approximation numbers

Give estimates on approximation numbers of composition
operators
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Dimension 1

Lower estimates: no fast decay

Lower estimates: no fast decay

Approximation numbers of composition operators cannot be
arbitrary small:
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Dimension 1
Lower estimates: no fast decay

Lower estimates: no fast decay

Approximation numbers of composition operators cannot be
arbitrary small:

Proposition

For every symbol ¢, there exists ¢ > 0 such that:

a,(C,) 2 Ce
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Lower estimates: no fast decay

Lower estimates: no fast decay

Approximation numbers of composition operators cannot be
arbitrary small:

Proposition

For every symbol ¢, there exists ¢ > 0 such that:

a,(C,) 2 Ce"=r" 0<r<l1
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Dimension 1
Lower estimates: no fast decay

Lower estimates: no fast decay

Approximation numbers of composition operators cannot be
arbitrary small:

Proposition

For every symbol ¢, there exists ¢ > 0 such that:

a,(C,) 2 Ce"=r" 0<r<l1

First stated by Parfenov (1988) under a “cryptic” form;
explicitely by LQR (2012).
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Dimension 1
Lower estimates: no fast decay

That use the fact that, if C, is compact, we can assume that
©(0) = 0 and ¢'(0) # 0, and then the non-zero eigenvalues of
C, are [¢'(0)]", n=0,1,..., and:

Weyl Lemma

If T: H— H is a compact operator on a Hilbert space H and
if (An)n>1 is the sequence of the eigenvalues of T, numbered
in non-increasing order, then:

[Ta(™) =TIl
k=1 k=1
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Dimension 1
Lower estimates: no fast decay

Note: When [|¢|l < 1, it is easy to see:
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Dimension 1
Lower estimates: no fast decay

Note: When [|¢|l < 1, it is easy to see:

an(C,) S llell%
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Dimension 1
Lower estimates: no fast decay

Note: When [|¢|l < 1, it is easy to see:
an(Cy) S el

It is actually the only case:

Theorem LQR 2012

If a,(C,) S r" with r < 1, then |lp]lo < 1.
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Dimension 1

Lower estimates: no fast decay

Two proofs:
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Dimension 1
Lower estimates: no fast decay

Two proofs:

@ The first proof uses Pietsch’s factorization theorem
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Dimension 1
Lower estimates: no fast decay

Pietsch’s factorization theorem is used for getting a measure p
supported by a compact set K C ¢(ID) such that, for the
restriction operator R,,: H — L?(u), one has a,(C,) 2 a,(R,,).
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Dimension 1
Lower estimates: no fast decay

R, is more tractable than C, and it can be proved (assuming
©(0) = 0 for simplicity) that:

lolloo >r = an(RM) 2 with s = s(r) — 1.

~ \/ﬁ r—1
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Dimension 1
Lower estimates: no fast decay

Two proofs:

@ The first proof uses Pietsch’s factorization theorem

@ The second one uses the Green capacity of p(D)
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Dimension 1

Lower estimates: no fast decay

Theorem LQR 2014

If ||l <1, one has:

lim [a,,(C@)]l/” — o~ 1/Cap[»(D)]

n—o0
and (assuming ¢(0) = 0 for simplicity):

Cap [p(D)] —— 40

lllloo—1
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Dimension 1
Lower estimates: no fast decay

Hence:

ap(C,) S implies |l < 1.
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Dimension 1

Lower estimates: no fast decay

The proof is based on a theorem of H. Widom:

Theorem H. Widom (1972)
Let K be a compact set of D and

r, = sup inf ||[f — R||C(K),
fEH™, ||f|lo<1 R

where the infimum is taken over all rational functions R with
at most n poles, all outside of ID. Then:

lim rl/n = =1/Cap(K)
n—o0 n
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Dimension 1

Lower estimates: no fast decay

The proof is based on a theorem of H. Widom:
Theorem H. Widom (1972)

Let K be a compact set of D and

— sup inf || — Rlle(k)y.
feEH> ||flleo<l R

where the infimum is taken over all rational functions R with
at most n poles, all outside of D. Then:

lim rl/n = e=1/Cap(K)
n—o0 n

and of the fact (communicated by A. Ancona) that if V is an
open connected set such that V C I, then

Cap (V) = Cap (V).



Dimension 1
Lower estimates: slow decay

Lower estimates: slow decay

If a,(C,) cannot decay fast, it can decay arbitrarily slowly:

Theorem LQR 2012
For every vanishing non-increasing sequence (£,),>1, there
exists a symbol ¢ such that:

an(C,) 2 en foralln>1
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Dimension 1
Lower estimates: slow decay

Lower estimates: slow decay

If a,(C,) cannot decay fast, it can decay arbitrarily slowly:

Theorem LQR 2012

For every vanishing non-increasing sequence (£,),>1, there
exists a symbol ¢ such that:

an(C,) 2 en foralln>1

That allows to have compact composition operators which are
in no Schatten class S,, p < co. This question of Sarason
(1988) was first solved by Carroll and Cowen in 1991.
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Dimension 1

Lower estimates: slow decay

However, one has a better result:

Theorem H. Queffélec - K. Seip 2015

For every function u: R, — R, such that u(x) N\, 0 as
x /oo and u(x?)/u(x) bounded below, there exists a
compact composition operator such that:

a,(C,) =~ u(n)
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Dimension 1

Lower estimates: slow decay

However, one has a better result:

Theorem H. Queffélec - K. Seip 2015

For every function u: R, — R, such that u(x) N\, 0 as
x /oo and u(x?)/u(x) bounded below, there exists a
compact composition operator such that:

It is actually a corollary of a result which will be stated later.
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Dimension 1
More specific lower etimates

More specific lower estimates

If u= (u1,...,u,)is a finite sequence of complex numbers, its
interpolation constant M, is the smallest M > 0 such that:

Vwa, ..., w, with |w;| <1 3f € H* with ||f]| < M s.t.

flu)=w;,j=1,...,n
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Dimension 1

More specific lower estimates

Proposition LQR 2013

Let ¢ a symbol, u = (vy,...,u,) € D",

such that the v; = ¢(u;)’s are distinct, and v = (v1, ..., v,).
Set:

1_ |12
p2 = inf |4

1550 T~ [p(uw)P

Daniel Li Composition operators



Dimension 1

More specific lower estimates

Proposition LQR 2013
Let ¢ a symbol, u = (vy,...,u,) € D",
such that the v; = ¢(u;)’s are distinct, and v = (v, ..., v,).
Set:
e LB 1Kl
19jsn = [p(w)P ~ 15izn K2

where K, is the reproducing kernel at z
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Dimension 1

More specific lower estimates

Proposition LQR 2013

Let ¢ a symbol, u = (vy,...,u,) € D",
such that the v; = ¢(u;)’s are distinct, and v = (v1, ..., v,).

Set:

1_ |12
p2 = inf |4

1550 T~ [p(uw)P

Then:
an(Ceo) 2 In Mv_z-

Daniel Li Composition operators



Dimension 1
More specific lower estimates

That follows from the fact that if Ruj = K, /||Ky]|. then:

n 1/2
o <M lsl)
j=1

- n 1/2 n .
(1)< 3o,
j=1 j=1
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Dimension 1

More specific lower estimates

By a suitable choice of w1, ..., u,, we get then:

Theorem LQR 2013

Assume that ¢(] —1,1[) C R and that 1 — ¢(r) < w(1 —r),
0 < r < 1, where w is continuous, increasing, sub-additive,
vanishes at 0, and w(h)/h —2 0o. Then:

—

_oo/(1—s) [wTi(as")
G 2 g e

where a =1 — (0) > 0.
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Dimension 1
Lower estimates: Examples

Examples
Lens maps

For 0 < 6 < 1, the lens map Ay is the conformal representation
(suitably determined) of D onto the lens domain below:
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Lower estimates: Examples

Examples

Lens maps

For 0 < 6 < 1, the lens map Ay is the conformal representation
(suitably determined) of D onto the lens domain below:

/N
N3
Y/
#
Vo
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Dimension 1
Lower estimates: Examples

Examples

Lens maps

For 0 < 6 < 1, the lens map Ay is the conformal representation
(suitably determined) of D onto the lens domain below:

/N
N3
Y/
#
Vo

One has w *(h) ~ A/’
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Dimension 1
Lower estimates: Examples

Examples

Lens maps

For 0 < 6 < 1, the lens map Ay is the conformal representation
(suitably determined) of D onto the lens domain below:

One has w*(h) ~ h'/?; so we get:
an(GCy,) > ae CVn

where o, C > 0 depends only on 6.
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Dimension 1

Lower estimates: Examples

Corollary LLQR 2013

If ¢ is univalent and (D) contains an angular sector centered
on the unit cercle and with opening 76, 0 < # < 1, then:

an(C,) 2 e=CVn,

with C > 0 depending only on 6.
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Dimension 1
Lower estimates: Examples

Examples

Cusp map
The cusp map x is the conformal representation (suitably
determined) of D onto the cusp domain below:
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Dimension 1
Lower estimates: Examples

Examples

Cusp map
The cusp map x is the conformal representation (suitably
determined) of D onto the cusp domain below:

+
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Lower estimates: Examples

Examples

Cusp map
The cusp map x is the conformal representation (suitably
determined) of D onto the cusp domain below:

+

One has w (h) ~z e C/h
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Dimension 1
Lower estimates: Examples

Examples

Cusp map
The cusp map x is the conformal representation (suitably
determined) of D onto the cusp domain below:

+

One has w *(h) ~ e “/": so wet get:

an(Cx) Z e—C n/logn
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Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp.
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Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp. However, let 9 > 0. Fore = ¢y >0
small enough, let V. = {z € C; Rez >0 and |z| < &},

fo(z) = z(—logz)? forze V.

and Gy = exp(—fy o gy),
where gy is a conformal representation of D onto V..
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Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp. However, let 9 > 0. Fore = ¢y >0
small enough, let V. = {z € C; Rez >0 and |z| < &},

fo(z) = z(—logz)? forze V.

and Gy = exp(—fy o gy),

where gy is a conformal representation of D onto V..

Then w(t) = t(log1/t)” and a,(C,,) = n~?/? so that gives
Cpy €ESp=>p>2/0
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Dimension 1
Lower estimates: Counter-example

Counter-example: the Shapiro-Taylor map

We shall see that these lower estimates for the lens maps and
the cusp map are sharp. However, let 9 > 0. Fore = ¢y >0
small enough, let V. = {z € C; Rez >0 and |z| < &},

fo(z) = z(—logz)? forze V.

and Gy = exp(—fy o gy),

where gy is a conformal representation of D onto V..

Then w(t) = t(log1/t)” and a,(C,,) = n~?/? so that gives
Cpy €ESp=>p>2/0

though actually C, €5, p>4/l.
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Dimension 1

Upper estimates

Upper estimates

Proposition (Parfenov 1988)

For every symbol ¢:

Gn(COP S sup  + /

o<h<1,¢cop h J35ER)

|B(2)[* dm,(2)

Daniel Li Composition operators



Dimension 1

Upper estimates

Upper estimates

Proposition (Parfenov 1988)

For every symbol ¢:

Gn(COP S sup  + /

o<h<1,¢cop h J35ER)

|B(2)[* dm,(2)

where B is a Blaschke product with less than n zeroes,
S(&, h) =D N D(&, h) and my, is the pull-back measure of m
(the normalized Lebesgue measure on 9D) by .
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Dimension 1

Upper estimates

Upper estimates

Proposition (Parfenov 1988)

For every symbol ¢:

Gn(COP S sup  + /

o<h<1,¢cop h J35ER)

|B(2)[* dm,(2)

where B is a Blaschke product with less than n zeroes,
S(&, h) =D N D(&, h) and my, is the pull-back measure of m
(the normalized Lebesgue measure on 9D) by .

Follows from: 1) the subspace BH? has codimension < n—1,
50 ¢n(Cp) < |Gy ppe |l where ¢,(C,) is the Gelfand number;
and: 2) a,(C,) = ¢,(C,) (because H? is a Hilbert space).
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Dimension 1

Upper estimates

Upper estimates

Proposition (Parfenov 1988)

For every symbol ¢:

Gn(COP S sup  + /

|B(2)[* dm,(2)

o0<h<1,¢cop N J5EnR)

where B is a Blaschke product with less than n zeroes,
S(&, h) =D N D(&, h) and my, is the pull-back measure of m
(the normalized Lebesgue measure on 9D) by .

Follows from: 1) the subspace BH? has codimension < n—1,
50 ¢n(Cp) < |Gy ppe |l where ¢,(C,) is the Gelfand number;

and: 2) a,(C,) = ¢,(C,) (because H? is a Hilbert space).

We deduce from this proposition the following theorem.



Dimension 1

Upper estimates

Theorem LQR 2013

Assume that ¢ is continuous on D and that ¢(ID) is contained
in a polygon with vertices p(e™),. .., p(e™). Then, if:

[e(e”) — p(e)] 2 (|t — g),

for |t — to| small enough and j =1,..., N, and w is

continuous, increasing, sub-additive, vanishes at 0, and

w(h)/h ﬁ 00, one has, for some constants x,0 > 0:
%

w1 (Kk27Hkn)
K 2 kn

an(C,) <

where k, is the largest integer such that N kdy < n and dy is
the integer part of o log —£5— e 2 my + 1.

Daniel Li Composition operators



Dimension 1

Upper estimates: Examples

Examples
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Dimension 1
Upper estimates: Examples

Examples

Lens maps
For \g, one has N =2, w™Y(h) ~ h'/%, d) ~ k and k, ~ \/n;
hence, for 3, ¢ > 0 depending only on 6:

a,,(C,\g) < ﬁe_cﬁ.
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Dimension 1
Upper estimates: Examples

Examples

Lens maps
For \g, one has N =2, w™Y(h) ~ h'/%, d) ~ k and k, ~ \/n;
hence, for 3, ¢ > 0 depending only on 6:

ae VN < an(Gy,) < Be—evn,
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Dimension 1
Upper estimates: Examples

Examples

Lens maps

For \g, one has N =2, wY(h) ~ h'/%, d\ ~ k and k, ~ \/n;
hence, for 3, c > 0 depending only on 6:

ae CVn < an(Gy,) < Beevn,

Remark. Similarly, H. Queffélec and K. Seip (2015) showed

that if
1
@(Z):m, O<O€<1,
then:

e_ﬂ(l_a)‘/(%)/a S an(Cw) SJ e—ﬂ(l—a) n/(2a)
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Dimension 1
Upper estimates: Examples

Examples

Lens maps
For \g, one has N =2, w1(h) ~ h'/?, di ~ k and k, =~ \/n;
hence, for 3, ¢ > 0 depending only on :

an(C,) < B e—cvn,

Cusp map
For the cusp map X, one has N =1, w1(h) = e V", d) ~ 2k
and 2% =~ n/log n; hence:

an(Cx) g e ¢ n/ Iogn_
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Upper estimates: Examples

Examples

Lens maps
For \g, one has N =2, w1(h) ~ h'/?, di ~ k and k, =~ \/n;
hence, for 3, ¢ > 0 depending only on :

ae CVn < an(Cy,) < fe v
Cusp map

For the cusp map X, one has N =1, w1(h) = e V", d) ~ 2k
and 2% =~ n/log n; hence:

e—Cn/Iogn 5 an(Cx) S e—cn/logn.
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Dimension 1
Upper estimates: Examples

Examples

Lens maps
For \g, one has N =2, w1(h) ~ h'/?, di ~ k and k, =~ \/n;
hence, for 3, ¢ > 0 depending only on :

an(C,) < B e—cvn,

Cusp map
For the cusp map X, one has N =1, w1(h) = e V", d) ~ 2k
and 2% =~ n/log n; hence:

an(Cx) g e ¢ n/ Iogn_

Daniel Li Composition operators



Dimension 1

Upper estimates: Examples

The example of lens maps can be generalized as follows:

Theorem LQR 2013

If (D) is contained in a polygon P with vertices on the unit
circle, then, for constants «, 5 > 0 depending only of P, one
has:

an(C,) < ae ™V,
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Dimension 1

Upper estimates: Examples

The example of lens maps can be generalized as follows:

Theorem LQR 2013

If (D) is contained in a polygon P with vertices on the unit
circle, then, for constants «, 5 > 0 depending only of P, one

has:
an(C,) < ae ™V,

For the proof, we may assume that ¢ is conformal from D
onto P and we use the Schwarz-Christoffel formula, which
allows to take @(h) = A’ in the previous theorem (where 70 is
the greatest angle of the polygon).
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Dimension 1

Upper estimates: Examples

The example of lens maps can be generalized as follows:

Theorem LQR 2013

If (D) is contained in a polygon P with vertices on the unit
circle, then, for constants «, 5 > 0 depending only of P, one

has:
an(C,) < ae ™V,

For the proof, we may assume that ¢ is conformal from D
onto P and we use the Schwarz-Christoffel formula, which
allows to take @(h) = A’ in the previous theorem (where 70 is
the greatest angle of the polygon).

Remark. This should be compared with the previous result
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Dimension 1

Upper estimates: Examples

The example of lens maps can be generalized as follows:

Theorem LQR 2013

If (D) is contained in a polygon P with vertices on the unit
circle, then, for constants «, 5 > 0 depending only of P, one

has:
an(C,) < ae ™V,

For the proof, we may assume that ¢ is conformal from D
onto P and we use the Schwarz-Christoffel formula, which
allows to take @(h) = A’ in the previous theorem (where 70 is
the greatest angle of the polygon).

Remark. This should be compared with the previous result
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Dimension 1
Upper estimates: Examples

Spread lens maps
In the two previous examples, the composition operators are in

all the Schatten classes S,, p > 0. For the following example,
it is not the case.
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Dimension 1
Upper estimates: Examples

Spread lens maps
In the two previous examples, the composition operators are in
all the Schatten classes S,, p > 0. For the following example,
it is not the case.

(Theorem LLQR 2013)

Let A\g be a lens map and ¢y(z) = Ag(z) exp ( — 1£2). Then:

an(Cs,) < (log n/n)t/29 n=23,...
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Dimension 1
Upper estimates: Examples

We get that C4, € S, for p > 26.
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Dimension 1
Upper estimates: Examples

We get that C4, € S, for p > 26.

However, with Luecking's characterization, one can show:

Theorem LLQR 2013

Cop € Sp & p > 20.
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Dimension 1
Upper estimates: Examples

We get that C4, € S, for p > 26.

However, with Luecking's characterization, one can show:

Theorem LLQR 2013

Cop € Sp & p > 20.

Open question

Find a lower estimate for a,(Cy,).
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Dimension 1

Remark

Our proofs for the lower and upper estimates give in particular
the following remark.

If B is a Blaschke product, (BH?)* is the model space
associated to B. One has:
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Dimension 1

For any symbol ¢:

an(C,) > sup inf || CXf||
T me(0]) fe(BHYE Y
lIfll=1
where the supremum is taken over all Blaschke products with
n zeros on the real interval (0,1).

2n(Cp) < inf sup (|G,

fEBH?
Ifl=1

where the infimum is taken over all Blaschke products with
less than n zeros.

Daniel Li Composition operators




Dimension 1
Two sides estimates

Two sides estimates

To end this part, we state results of H. Queffélec and K. Seip
with two sides estimates.
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Two sides estimates

To end this part, we state results of H. Queffélec and K. Seip
with two sides estimates.

Notation. Let u: D — R be in the disk algebra (i.e.
continuous on D and analytic in D) such that u(Z) = u(z); let
i its harmonic conjugate, and:

oy = exp(—u —id).
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Two sides estimates

To end this part, we state results of H. Queffélec and K. Seip
with two sides estimates.

Notation. Let u: D — R be in the disk algebra (i.e.
continuous on D and analytic in D) such that u(Z) = u(z); let
i its harmonic conjugate, and:

oy = exp(—u —id).
One assumes that, if U(t) = u(e™), U is increasing on|0, ],
U(0) = 0, and that U is smooth, except perhaps at t = 0.
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Two sides estimates

Two sides estimates

To end this part, we state results of H. Queffélec and K. Seip
with two sides estimates.

Notation. Let u: D — R be in the disk algebra (i.e.
continuous on D and analytic in D) such that u(Z) = u(z); let
i its harmonic conjugate, and:

oy = exp(—u —id).
One assumes that, if U(t) = u(e™), U is increasing on|0, ],

U(0) = 0, and that U is smooth, except perhaps at t = 0.
Moreover, one assumes that:

to ensure that C,, is compact.



Dimension 1

Two sides estimates

Then:
Theorem (smooth case) H. Queffélec - K. Seip 2015

Assume that, for some ¢ > 1 and C > 0, one has, for t small

enough:
t U'(t) c U(t) C
<1 <
U = Tlege ™ Th(0) " Jlogf](log|log f])
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Two sides estimates

Then:
Theorem (smooth case) H. Queffélec - K. Seip 2015

Assume that, for some ¢ > 1 and C > 0, one has, for t small

enough:
t U'(t) c U(t) C
<1 <
Ue) = TTege ™ Thy(d) " Tl tl(log]log t])

These assumptions mean that ¢, is tangentially smooth at 1
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Two sides estimates

Then:
Theorem (smooth case) H. Queffélec - K. Seip 2015

Assume that, for some ¢ > 1 and C > 0, one has, for t small

enough:
t U'(t) c U(t) C
<1 <
U = Tlege ™ Th(0) " Jlogf](log|log f])
Then:
1
an(Cy,,) =~ .
()~
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Dimension 1

Two sides estimates

Then:
Theorem (smooth case) H. Queffélec - K. Seip 2015

Assume that, for some ¢ > 1 and C > 0, one has, for t small

enough:
t U'(t) c U(t) C
<1 <
U = Tlege ™ Th(0) " Jlogf](log|log f])
Then:
1
an(Cy,,) =~ .
()~
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Dimension 1
Two sides estimates

For the second result, we need a bit more notation. Writing:
U(t) = et for 0 < t <1 and U(t) < 1/e,
one defines wy by the implicit equation:
nu (x/wu(x)) = wu(x)

for x > 0 such that ny(x) > 1.

Daniel Li Composition operators



Dimension 1
Two sides estimates

Then:
Theorem (sharp cusp case) H. Queffélec - K. Seip 2015

Assume that:
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Two sides estimates

Then:
Theorem (sharp cusp case) H. Queffélec - K. Seip 2015

Assume that:

7y (x) =o0(1l/x) asx— o0;

These assumptions mean that ¢ is sharp cusped at 1
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Dimension 1
Two sides estimates

Then:
Theorem (sharp cusp case) H. Queffélec - K. Seip 2015

Assume that:

Then:
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Dimension 1
Two sides estimates

Then:
Theorem (sharp cusp case) H. Queffélec - K. Seip 2015

Assume that:

Then:

an(Cy,) = exp [_ (%2 + 0(1)) wu’zn)} '

The proofs are rather involved.

Daniel Li Composition operators



Second part: dimension d > 2

Daniel Li Composition operators



Second part: dimension d > 2

Two domains are classical:

@ the open ball
By={z=(z1,...,24) €C4; |z + -+ |z4]? < 1}

Daniel Li Composition operators



Second part: dimension d > 2

Two domains are classical:

@ the open ball
By={z=(z1,...,24) €C4; |z + -+ |z4]? < 1}

e the polydisc DY

Daniel Li Composition operators



Second part: dimension d > 2

Two domains are classical:

@ the open ball
By={z=(z1,...,24) €C4; |z + -+ |z4]? < 1}

e the polydisc DY

The Hardy space H3(Q) (with Q = By or DY) is defined
similarly as in dimension 1.
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Two domains are classical:

@ the open ball
By={z=(z1,...,24) €C4; |z + -+ |z4]? < 1}

e the polydisc DY

The Hardy space H3(Q) (with Q = By or DY) is defined
similarly as in dimension 1.

Not all symbols ¢: Q — Q give a bounded composition
operator on H?(Q).
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Second part: dimension d > 2

Two domains are classical:

@ the open ball
By={z=(z1,...,24) €C4; |z + -+ |z4]? < 1}

e the polydisc DY

The Hardy space H3(Q) (with Q = By or DY) is defined
similarly as in dimension 1.

Not all symbols ¢: Q — Q give a bounded composition
operator on H?(Q).

In the sequel, we shall assume the symbol ¢ is such that ¢(Q2)
has non-void interior.
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Dimension d > 2

Lower estimates

One has, as in dimension 1:

Proposition BLQR 2015

Let C,: H*(Q) — H?*(Q) be compact (Q = By or D9).
Let u = (u1,...,u,) € Q" and v; = p(u;) be distinct. Let M,
be the interpolation constant of v = (v1,...,v,). Then,
setting:
d
. 1 |U' k|
2 — .F J, ,

= Gl LT 0 2

one has:

an(C‘P) 2 ,UnMv_z'
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Dimension d > 2
Lower estimates

Then:

Theorem BLQR 2015

Let C,: H*(Q) — H?*(Q) be compact (2 = B, or D9). Then,
for some constant C > 0, one has:

a,(C,) Z e—Cnt/?.
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Dimension d > 2
Lower estimates

Then:

Theorem BLQR 2015

Let C,: H*(Q) — H?*(Q) be compact (2 = B, or D9). Then,
for some constant C > 0, one has:

a,(C,) Z e—Cnt/?.

The interesting point is the dependence with the dimension d.
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Dimension d > 2
Lower estimates

It is obtained with a good choice of the sequence (uy, ..., u,)
in the previous proposition, and using estimates on its
interpolation constant due to:

e P. Beurling when Q = D¢9;
e B. Berndtsson (1985) when Q = B,.
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Dimension d > 2
Lower estimates

Generalization

A bounded symmetric domain of C? is a bounded open convex
and circled subset Q of C¥ such that for every point a € Q,
there is an involutive bi-holomorphic map u: Q — €2 such that
a is an isolated fixed point of u (equivalently, as shown by
J.-P. Vigué: u(a) = a and uv/(a) = —id).
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Dimension d > 2
Lower estimates

Generalization

A bounded symmetric domain of C? is a bounded open convex
and circled subset Q of C¥ such that for every point a € Q,
there is an involutive bi-holomorphic map u: Q — €2 such that
a is an isolated fixed point of u (equivalently, as shown by
J.-P. Vigué: u(a) = a and uv/(a) = —id).

The unit ball By and the polydisk D? are examples of bounded
symmetric domains.
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Lower estimates

Hardy space

The Shilov boundary Sq of € is the smallest closed set
F C 0% such that

sup |f(z)| = sup|f(z)]
zeQ zeQ

for every function f holomorphic in a neighbourhood of Q. It
is also the set of extreme points of .
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Lower estimates

Hardy space

The Shilov boundary Sq of € is the smallest closed set
F C 0% such that

sup |f(z)| = sup|f(z)]
zeQ zeQ

for every function f holomorphic in a neighbourhood of Q. It
is also the set of extreme points of .
The Shilov boundary of By is its usual boundary S9-1.
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Dimension d > 2
Lower estimates

Hardy space

The Shilov boundary Sq of € is the smallest closed set
F C 0% such that

sup |f(z)| = sup [f(z)]
zeQ zeQ
for every function f holomorphic in a neighbourhood of Q. It
is also the set of extreme points of Q.
The Shilov boundary of By is its usual boundary S9-1.
But the Shilov boundary of the bidisk D? is
{(z1,2) € C* |z1| = |2| = 1},
though
OD? = {(z1,2) € C?; |z|,|z| <1and |z]| =1 or |z| = 2}.
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Dimension d > 2
Lower estimates

There is a unique probability measure o on Sq which is
invariant by the automorphisms u of Q such that u(0) = 0.

The Hardy space H?(Q) is the space of analytic functions
f: Q — C such that:

1/2
1fll2 = ( sup !f(ré)!2d0(5)> <.

0<r<1 J sq
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Dimension d > 2
Lower estimates

We have:

Theorem BLQR 2015

Let Q be a bounded symmetric domain of C? and

C,: H*(Q) — H?*(Q) compact. Then, for some constant
C > 0, one has:

an(C,) = e ",
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Dimension d > 2

Lower estimates

That use Weyl Lemma and:

Theorem (D. Clahane 2005)

Let Q be a bounded symmetric domain of C¢ and ¢: Q — Q
be a holomorphic map inducing a compact composition
operator C,: H*(Q) — H?(Q2). Then ¢ has a unique fixed
point zy € €2 and the spectrum of C, consists of 0, and all
possible products of eigenvalues of the derivative ¢'(z).
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Lower estimates

That use Weyl Lemma and:

Theorem (D. Clahane 2005)

Let Q be a bounded symmetric domain of C¢ and ¢: Q — Q
be a holomorphic map inducing a compact composition
operator C,: H*(Q) — H?(Q2). Then ¢ has a unique fixed
point zy € €2 and the spectrum of C, consists of 0, and all
possible products of eigenvalues of the derivative ¢'(z).

However, the first proof give more information to construct
examples.
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Upper estimates

Upper estimates

Theorem BLQR 2015

LetQ:BdIX"'XBdN, d1++dN:d

Daniel Li Composition operators



Dimension d > 2
Upper estimates

Upper estimates

Theorem BLQR 2015

LetQ:Bdl X--'XBdN, d1++dN:d
N =1 gives the ball By
N=dand d; =---=dy =1 give the polydisk D?.
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Upper estimates

Upper estimates

Theorem BLQR 2015
LetQ:Bdl X--'XBdN, dl—l——f-d[\/:d

If l¢lleo < 1, then C, is compact and a,(C,) < o= Cnt/?
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Upper estimates

Upper estimates

Theorem BLQR 2015
LetQ:Bdl X - X BdN: dl—l——f-d[\/:d

If l¢lleo < 1, then C, is compact and a,(C,) < o= Cnt/?

Open question

Does that hold for © a general bounded symmetric domain?
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Upper estimates

Upper estimates

Theorem BLQR 2015

LetQ:BdIX--'XBdN, dl—l——f-d[\/:d

If l¢lleo < 1, then C, is compact and a,(C,) < o= Cnt/?

Open question
Does that hold for © a general bounded symmetric domain?

Open question

Does the converse hold?
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Upper estimates

In the case of the polydisk Q = D9, and “diagonal” symbols,
one has:

Theorem BLQR 2015

Let ©1,...,0p: D — D be symbols inducing compact
composition operators on H?(DD), and let:

90(217 XX sz) = (901(21)7 000y ng(Zd))-
Then, for C,: H*(D?) — H?(DY), one has:

d
€)= (2 TTIGH) , it [on( G +a0( ]
J:
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Dimension d > 2
Upper estimates

To prove that, for fixed ny, ..., ng such that ny---ny < n, one
consider, for each j =1,...,d, an operator

R H2(D) — H3(D)

with rank < n; such that ||C,, — Rj|| = a,,(C,,).
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Upper estimates

To prove that, for fixed ny, ..., ng such that ny---ny < n, one
consider, for each j =1,...,d, an operator

R;: H*(D) — H?*(D)
with rank < n; such that ||C,, — Rj|| = a,,(C,,).
One defines R: H*(DY) — H?(DY) by:
R(z%) = Ri(#™) - Ra(24”)

where o = (ay, ..., aq).
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Upper estimates

To prove that, for fixed ny, ..., ng such that ny---ny < n, one
consider, for each j =1,...,d, an operator

R;: H*(D) — H?*(D)
with rank < n; such that ||C,, — Rj|| = a,,(C,,).
One defines R: H*(DY) — H?(DY) by:
R(z%) = Ri(#™) - Ra(24”)

where o = (ay, ..., aq).

Then R has rank < ny---ny < nand ||C, — R|| is less than
the upper estimate given in the theorem.
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Examples

Examples

Multi-lens maps
Let 0 < f1,...,04 <1and )g,,...,\g, be the associated lens
maps. Then, if:

o(z1,...,24) = (Mo, (21), - - -, Aoy (2a)),

one has:

_ant/(2d) _3pl/(2d)
e™ " S an(Cp) Se -
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Examples

Multi-cusp map

Let x be the above cusp map, and
o(z,..,24) = (X(z1), -, x(24)). Then:

e—anl/d/logn S an(Cga) 5 e—ﬁnl/d/log n
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Dimension d > 2

Examples

Another type of example

Let ¢1,...,¢cqg >0 suchthat ¢ +---+¢cy <1 and
o(z1,...,24) = (c1zs + -+ - + ¢c424,0,...,0). Then:

(C1+"‘+Cd)n
an(Co) ® — g
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Examples

Another type of example

Let ¢1,...,¢cqg >0 suchthat ¢ +---+¢cy <1 and
o(z1,...,24) = (c1zs + -+ - + ¢c424,0,...,0). Then:

(C1+"‘+Cd)n
an(Co) ® — g

In particular, if ¢; +--- 4+ ¢4 =1, then C, is compact, and

eSS, & p>4/(d-1).
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Examples

This example is called by Hervé “toy example”
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Examples

This example is called by Hervé “toy example”: this is the
“Toy Story”
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Dimension d > 2
Examples

This example is called by Hervé “toy example”: this is the

“Toy Story”
m To infinity
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Infinite dimension
Introduction

Third part: infinite dimension

Introduction

We saw that:

For C,: H*(D) — H?(D?), one has:
o always a,(C,) = e ¢
o if [¢lloe < L, then an(C,) < e<"

1/d
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Introduction

Third part: infinite dimension

Introduction

We saw that:

For C,: H*(D) — H?(D?), one has:
o always a,(C,) = e ¢

7 —cnl/
o if |¢]loo < 1, then a,(C,) e ™"

As e=€m" 5 e=C > 0, one might believe that there is no

d—oo
compact composition operator in infinite dimension.
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Introduction

Third part: infinite dimension

Introduction

We saw that:

For C,: H*(D) — H?(D?), one has:
o always a,(C,) = e ¢

7 —cnl/
o if |¢]loo < 1, then a,(C,) e ™"

As e=€m" 5 e=C > 0, one might believe that there is no

d—oo
compact composition operator in infinite dimension.

Actually, it is not the case, as we shall see.
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Infinite dimension
Hardy space

Hardy space

We consider the infinite polydisk D*°.
We have to define the Hardy space H?.
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Infinite dimension
Hardy space

Hardy space

We consider the infinite polydisk D*°.
We have to define the Hardy space H?.
It is natural to ask that it is the space of all functions f with

(1) f(2)=) cz* and |If}:=) |l < oo,

a>0 a>0

Where a = (Oé_l)jzl’ Z = (ZJ)JE]- and Za — szl ZJaf

If one asks absolute convergence in (1), we should have
2
D a0 1297 < 00
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Infinite dimension
Hardy space

Since one has the Euler type formula:

o0

> =Tl

a>0

we get that:

o0
D lzP < oo
=1
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Infinite dimension
Hardy space

Since one has the Euler type formula:

|
|2 =
2= i—pp
we get that:
o
D lzP < oo
j=1

Hence it is natural to consider Q, = D> N /5 instead of the
whole polydisk.

Daniel Li Composition operators



Infinite dimension

Hardy space

Actually, we will work with Q; = D°° N ¢; (which is an open
subset of /1) because of the following proposition:

Proposition LQR 2016

Let ¢;: D — D be analytic, j =1,2,... and
o(z) = (goj(zj)) . Then [|C,(f)]]2 < oo for all ||f]], < oo if

and only if:

ZWJ )| <oo.
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Infinite dimension

Hardy space

Actually, we will work with Q; = D°° N ¢; (which is an open
subset of /1) because of the following proposition:

Proposition LQR 2016

Let ¢;: D — D be analytic, j =1,2,... and
o(z) = (goj(zj)) . Then [|C,(f)]]2 < oo for all ||f]], < oo if

and only if:

ZWJ )| <oo.

Hence H? = H?(;) will be the space of all f: Q; — C such
that [|f]|2 < oc.
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Infinite dimension
Composition operators

Composition operators
We will say that ¢ is truly infinite-dimensional if
¢'(a): ¢1 — {1 is one-to-one for some a € Q.
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Infinite dimension

Composition operators

Composition operators
We will say that ¢ is truly infinite-dimensional if
¢'(a): ¢1 — {1 is one-to-one for some a € Q.

First, if (1) remains far from 04, one has:

Theorem LQR 2016

Let p: Q; — Q; truly infinite-dimensional such that
(1) C Q; is compact. Then:
1

o3 )
) C,: H*(Q1) — H?(Q) is bounded, and even compact;
2) ¢'(0): £; — ¢y is compact;

3) for

all p > 0, one has:

(o)

1
Z [Iog (l/an(C@))}p -

n=1
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Infinite dimension
Composition operators

There exist compact composition operators
Co: H*(S1) — H?(Q1) such that »(£4) is unbounded in ¢;.

One can take a diagonal symbol.
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Infinite dimension
Composition operators

There exist compact composition operators
Co: H*(S1) — H?(Q1) such that »(£4) is unbounded in ¢;.

One can take a diagonal symbol.

Remark. Assuming ©(€2;) compact in ¢; instead compact in
Q; is not sufficient.

1
Example: ¢(z) = (% ,0,0,.. )
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Infinite dimension

Composition operators

Proposition LQR 2016

Let |)\1|, |)\2|, ...<1and (,D(Z) = ()\J'ZJ')J'Zl' Then @ Ql = Ql
and, for every p > 0 :

A€l = G €5

In particular, there exist truly infinite-dimensional symbols on
; such that C, is in all Schatten classes S,, p > 0.
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Infinite dimension

Composition operators

Theorem LQR 2016

For every 0 < ¢ < 1, there exist compact composition
operators on H?(Q;) with truly infinite-dimensional symbol
such that:

an(C,) Sexp [ — ceb('°g”)6].
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