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If a function f is infinitely differentiable on an open neighbourhood of a point x0, its Taylor
series at x0 is denoted by

T (f, x0)(x) =
+∞∑
n=0

f (n)(x0)
n!

(x− x0)n.

We say that f is analytic at x0 if T (f, x0) converges to f on an open neighbourhood of x0. If this
is not the case, we say that f has a singularity at x0. A function with a singularity at each point
of an interval is called nowhere analytic on the interval.

Several examples of infinitely differentiable nowhere analytic functions exist and generic results
have already been obtained ([2, 3, 5, 6, 7]). This question of genericity can also be treated using
the concept of prevalence, introduced by Hunt, Sauer and Yorke ([4]). In the talk, we show that
the set of nowhere analytic functions is prevalent in C∞([0, 1]). More precise results are obtained
using Gevrey classes ([1]). This study is then extended to the classes of quasi-analytic functions.
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