Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

Gilles Godefroy, ℓ_1 , and I; and some others . . .

Daniel Li

Université d'Artois (Lens, France)

Analysis Meeting on the occasion of the 60th birthday of our colleague and friend Gilles Godefroy

Mons - November 4-5, 2013

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

A movie from 1954

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

A movie from 1954 \approx 1953 + ℓ_1 !!!!

< 注→ 注

< ∃→

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Gilles Godefroy and ℓ_1

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

< 注→ < 注→ …

∃ _ ��� @

A separable Banach space X contains ℓ_1 if and only if there exists an equivalent norm $||| \cdot |||$ on X and $z \in X^{**} \setminus \{0\}$ such that :

 $|||x + z||| = |||x||| + |||z||| \quad \forall x \in X.$

A separable Banach space X contains ℓ_1 if and only if there exists an equivalent norm $||| \cdot |||$ on X and $z \in X^{**} \setminus \{0\}$ such that :

 $|||x + z||| = |||x||| + |||z||| \quad \forall x \in X.$

Sufficient condition: easy, by local reflexivity and induction.

A separable Banach space X contains ℓ_1 if and only if there exists an equivalent norm $||| \cdot |||$ on X and $z \in X^{**} \setminus \{0\}$ such that :

 $|||x + z||| = |||x||| + |||z||| \quad \forall x \in X.$

Sufficient condition: easy, by local reflexivity and induction.

Now: ball topology !

A separable Banach space X contains ℓ_1 if and only if there exists an equivalent norm $||| \cdot |||$ on X and $z \in X^{**} \setminus \{0\}$ such that :

$$|||x + z||| = |||x||| + |||z||| \quad \forall x \in X.$$

Sufficient condition: easy, by local reflexivity and induction.

Now: ball topology !

It is the coarsest topology b_X on X for which all closed balls of X are closed.

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains ℓ_1 if and only if, on the unit ball B_X , the ball topology b_X is irreducible.

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains ℓ_1 if and only if, on the unit ball B_X , the ball topology b_X is irreducible.

A topological space is irreducible if two arbitrary non-empty open sets have non-empty intersection.

Equivalently here: if B_X is contained in the union of a finite number of closed balls, then B_X is contained in one of them.

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains ℓ_1 if and only if, on the unit ball B_X , the ball topology b_X is irreducible.

A topological space is irreducible if two arbitrary non-empty open sets have non-empty intersection.

Equivalently here: if B_X is contained in the union of a finite number of closed balls, then B_X is contained in one of them.

Such a topology is highly non-Hausdorff.

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains ℓ_1 if and only if, on the unit ball B_X , the ball topology b_X is irreducible.

A topological space is irreducible if two arbitrary non-empty open sets have non-empty intersection.

Equivalently here: if B_X is contained in the union of a finite number of closed balls, then B_X is contained in one of them.

Such a topology is highly non-Hausdorff.

The sufficient part is given by:

In fall of 1989, Gilles asked me two questions:

< 注→ 注

In fall of 1989, Gilles asked me two questions:

Question 1

Let X be an isomorphic predual of ℓ_1 with Pełczyński's property (u); is X isomorphic to c_0 ?

In fall of 1989, Gilles asked me two questions:

Question 1

Let X be an isomorphic predual of ℓ_1 with Pełczyński's property (u); is X isomorphic to c_0 ?

Question 2

Let X be a subspace of L^1 whose unit ball B_X is compact and locally convex for the convergence in measure. Is X isomorphic to a subspace of ℓ_1 ?

In fall of 1989, Gilles asked me two questions:

Question 1

Let X be an isomorphic predual of ℓ_1 with Pełczyński's property (u); is X isomorphic to c_0 ?

Question 2

Let X be a subspace of L^1 whose unit ball B_X is compact and locally convex for the convergence in measure. Is X isomorphic to a subspace of ℓ_1 ?

Question 2: answered in 1994 (Gilles + N. Kalton + D. Li, published in 1996)

In fall of 1989, Gilles asked me two questions:

Question 1

Let X be an isomorphic predual of ℓ_1 with Pełczyński's property (u); is X isomorphic to c_0 ?

Question 2

Let X be a subspace of L^1 whose unit ball B_X is compact and locally convex for the convergence in measure. Is X isomorphic to a subspace of ℓ_1 ?

Question 2: answered in 1994 (Gilles + N. Kalton + D. Li, published in 1996)

Question 1: still open.

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

문에 비문어

∃ _ ��� @

It is well known that the topology of convergence in measure τ_m is not locally convex on L^1 , and does not fit well with the weak topology (there are nets in the unit ball which converge weakly to 0 but to I in measure).

It is well known that the topology of convergence in measure τ_m is not locally convex on L^1 , and does not fit well with the weak topology (there are nets in the unit ball which converge weakly to 0 but to I in measure).

On the other hand (Kadets + Pełczyński, 1962):

 $X \subseteq L^1$ is reflexive $\iff \tau_m = \text{norm topology on whole } X$.

In particular, τ_m is locally convex on X and finer than the weak topology.

It is well known that the topology of convergence in measure τ_m is not locally convex on L^1 , and does not fit well with the weak topology (there are nets in the unit ball which converge weakly to 0 but to I in measure).

On the other hand (Kadets + Pełczyński, 1962):

 $X \subseteq L^1$ is reflexive $\iff \tau_m =$ norm topology on whole X.

In particular, τ_m is locally convex on X and finer than the weak topology.

Now (as easy too see): if Σ is the σ -algebra generated by a measurable partition, then $X = \mathbb{E}^{\Sigma}(L^1)$ is isometric to ℓ_1 and on its unit ball B_X , τ_m is equal to the *w**-topology of ℓ_1 , so this unit ball is compact and locally convex for τ_m (the same is true for the subspaces Y of X whose unit ball is closed in measure), and weaker than the weak topology.

It is well known that the topology of convergence in measure τ_m is not locally convex on L^1 , and does not fit well with the weak topology (there are nets in the unit ball which converge weakly to 0 but to I in measure).

On the other hand (Kadets + Pełczyński, 1962):

 $X \subseteq L^1$ is reflexive $\iff au_m =$ norm topology on whole X.

In particular, τ_m is locally convex on X and finer than the weak topology.

Now (as easy too see): if Σ is the σ -algebra generated by a measurable partition, then $X = \mathbb{E}^{\Sigma}(L^1)$ is isometric to ℓ_1 and on its unit ball B_X , τ_m is equal to the *w**-topology of ℓ_1 , so this unit ball is compact and locally convex for τ_m (the same is true for the subspaces Y of X whose unit ball is closed in measure), and weaker than the weak topology.

What about the converse?

Theorem [Gilles + N. Kalton + D. Li (1996)]

Let X be a subspace of L^1 with (AP). Then its unit ball B_X is compact and locally convex for τ_m iff for every $\varepsilon > 0$ there is a w^* -closed subspace X_{ε} of ℓ_1 such that dist $(X, X_{\varepsilon}) \le 1 + \varepsilon$.

Theorem [Gilles + N. Kalton + D. Li (1996)]

Let X be a subspace of L^1 with (AP). Then its unit ball B_X is compact and locally convex for τ_m iff for every $\varepsilon > 0$ there is a w^* -closed subspace X_{ε} of ℓ_1 such that dist $(X, X_{\varepsilon}) \le 1 + \varepsilon$.

Main tool:

Theorem [N. Kalton + D. Werner (1995)]

Let Y be a Banach space with separable dual Y^* . If Y has property (m_1^*) :

$$y_n^* \xrightarrow{w^*} 0 \implies \\ \left[\limsup \|y^* + y_n^*\| = \|y^*\| + \limsup \|y_n^*\|, \forall y^* \in Y^* \right],$$

then, for all $\varepsilon > 0$, there exists a subspace Y_{ε} of c_0 such that dist $(Y, Y_{\varepsilon}) \leq 1 + \varepsilon$.

э

In our case, if B_X is compact and locally convex for au_m , then

 $X^{\sharp} = \{ \varphi \in X^* ; \varphi_{|B_X} \tau_m \text{-continuous} \}$

satisfies $(X^{\sharp})^* = X$ and has (m_1^*) .

In our case, if B_X is compact and locally convex for au_m , then

 $X^{\sharp} = \{ \varphi \in X^* ; \varphi_{|B_X} \tau_m \text{-continuous} \}$

satisfies $(X^{\sharp})^* = X$ and has (m_1^*) .

We used then:

Theorem [Gilles+ N. Kalton + D. Li (1996)]

Let Z be a subspace of c_0 with (AP). If Z^* is isometric to a subspace of L^1 , then, for every $\varepsilon > 0$, there exists a w^* -closed subspace Y_{ε} of ℓ_1 such that dist $(Z^*, Y_{\varepsilon}) \le 1 + \varepsilon$.

ヨ▶ ★ヨ▶ ヨーのへで

In our case, if B_X is compact and locally convex for au_m , then

 $X^{\sharp} = \{ \varphi \in X^* ; \varphi_{|B_X} \tau_m \text{-continuous} \}$

satisfies $(X^{\sharp})^* = X$ and has (m_1^*) .

We used then:

Theorem [Gilles+ N. Kalton + D. Li (1996)]

Let Z be a subspace of c_0 with (AP). If Z^* is isometric to a subspace of L^1 , then, for every $\varepsilon > 0$, there exists a w^* -closed subspace Y_{ε} of ℓ_1 such that dist $(Z^*, Y_{\varepsilon}) \le 1 + \varepsilon$.

Uses a skipped blocking argument and a average argument, using the cotype 2 of L^1 , via Khintchine's inequalities.

- ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ ۹ ()

In our case, if B_X is compact and locally convex for au_m , then

 $X^{\sharp} = \{ \varphi \in X^* ; \varphi_{|B_X} \tau_m \text{-continuous} \}$

satisfies $(X^{\sharp})^* = X$ and has (m_1^*) .

We used then:

Theorem [Gilles+ N. Kalton + D. Li (1996)]

Let Z be a subspace of c_0 with (AP). If Z^* is isometric to a subspace of L^1 , then, for every $\varepsilon > 0$, there exists a w^* -closed subspace Y_{ε} of ℓ_1 such that dist $(Z^*, Y_{\varepsilon}) \le 1 + \varepsilon$.

Uses a skipped blocking argument and a average argument, using the cotype 2 of L^1 , via Khintchine's inequalities.

This is a partial converse of a result of D. Alspach (1979): every quotient of c_0 is almost isometric to subspaces of c_0 .

About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X_0 of L^1 whose unit ball is compact, but not locally convex in measure.

2) There exists a subspace X_1 of L^1 whose unit ball is compact, and locally convex in measure, but for every sub- σ -algebra Σ generated by a measurable partition, one has:

$$\sup_{f\in B_{X_1}} \|\mathbb{E}^{\Sigma}f - f\|_1 \geq 1$$
 .

About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X_0 of L^1 whose unit ball is compact, but not locally convex in measure.

2) There exists a subspace X_1 of L^1 whose unit ball is compact, and locally convex in measure, but for every sub- σ -algebra Σ generated by a measurable partition, one has:

$$\sup_{f\in B_{X_1}} \|\mathbb{E}^{\Sigma}f-f\|_1\geq 1$$
 .

Question. If X is a subspace of L^1 almost isometric to w^* -closed subspaces of ℓ_1 , does it exist a σ -algebra Σ , generated by a measurable partition such that, for every $\varepsilon > 0$, one has $d_{\tau_m}(f, \mathbb{E}^{\Sigma} f) \leq \varepsilon$ for every $f \in B_X$?

About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X_0 of L^1 whose unit ball is compact, but not locally convex in measure.

2) There exists a subspace X_1 of L^1 whose unit ball is compact, and locally convex in measure, but for every sub- σ -algebra Σ generated by a measurable partition, one has:

$$\sup_{f\in B_{X_1}} \|\mathbb{E}^{\Sigma}f-f\|_1\geq 1$$
 .

Question. If X is a subspace of L^1 almost isometric to w^* -closed subspaces of ℓ_1 , does it exist a σ -algebra Σ , generated by a measurable partition such that, for every $\varepsilon > 0$, one has $d_{\tau_m}(f, \mathbb{E}^{\Sigma} f) \leq \varepsilon$ for every $f \in B_X$?

In the 1996's paper, we asserted that the answer is "yes", but there is a gap in the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

About Question 1: strange preduals of ℓ_1

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

< 注→ 注

Isomorphic preduals of ℓ_1 may have strange properties. In 1980, Bourgain and Delbaen gave a method to construct such peculiar \mathcal{L}^{∞} spaces. This construction has been used and improved by several people.

Isomorphic preduals of ℓ_1 may have strange properties. In 1980, Bourgain and Delbaen gave a method to construct such peculiar \mathcal{L}^{∞} spaces. This construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of ℓ_1 with the Radon-Nikodým property and are somewhat reflexive (every infinite dimensional subspace contains another one which is reflexive and infinite dimensional).
Isomorphic preduals of ℓ_1 may have strange properties. In 1980, Bourgain and Delbaen gave a method to construct such peculiar \mathcal{L}^{∞} spaces. This construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of ℓ_1 with the Radon-Nikodým property and are somewhat reflexive (every infinite dimensional subspace contains another one which is reflexive and infinite dimensional).

2) (Alspach, 2000) These spaces have Szlenk index equal to ω .

Isomorphic preduals of ℓ_1 may have strange properties. In 1980, Bourgain and Delbaen gave a method to construct such peculiar \mathcal{L}^{∞} spaces. This construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of ℓ_1 with the Radon-Nikodým property and are somewhat reflexive (every infinite dimensional subspace contains another one which is reflexive and infinite dimensional).

2) (Alspach, 2000) These spaces have Szlenk index equal to ω .

3) (Haydon, 2000) If X is such a space, there is some $r \in (1, \infty)$ such that every infinite dimensional subspace of X contains ℓ_r .

Isomorphic preduals of ℓ_1 may have strange properties. In 1980, Bourgain and Delbaen gave a method to construct such peculiar \mathcal{L}^{∞} spaces. This construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of ℓ_1 with the Radon-Nikodým property and are somewhat reflexive (every infinite dimensional subspace contains another one which is reflexive and infinite dimensional).

2) (Alspach, 2000) These spaces have Szlenk index equal to ω .

3) (Haydon, 2000) If X is such a space, there is some $r \in (1, \infty)$ such that every infinite dimensional subspace of X contains ℓ_r .

It won't define the Szlenk index, and I only say that the Szlenk index is an ordinal and that of c_0 is ω , the first infinite ordinal.

By mixing Bourgain-Delbaen's construction with Gowers-Maurey's one:

Theorem [Argyros + Haydon (2011)]

There is an isomorphic predual of ℓ_1 which is HI (hereditarily indecomposable) and has very few operators: every operator has the form $\lambda \operatorname{Id} + K$, where λ is a scalar and K a compact operator.

By mixing Bourgain-Delbaen's construction with Gowers-Maurey's one:

Theorem [Argyros + Haydon (2011)]

There is an isomorphic predual of ℓ_1 which is HI (hereditarily indecomposable) and has very few operators: every operator has the form $\lambda \operatorname{Id} + K$, where λ is a scalar and K a compact operator.

Very recently, M. Tarbard (arXiv), a student of R. Haydon, has given new examples in his thesis. For example: 1) for every $k \ge 1$, there are HI ℓ_1 preduals X_k whose Calkin algebra $\mathcal{L}(X_k)/\mathcal{K}(X_k)$ is of dimension k (for $k \ge 2$, they have few operators, but not very few);

2) there is a predual of ℓ_1 whose Calkin algebra is isometric, as a Banach algebra, to ℓ_1 ; consequently, it is indecomposable but not hereditarily.

A B A A B A

э

One more result.

Theorem [Daws + Haydon + Schlumprecht + White (2012)]

There is an isomorphic predual F of $\ell_1(\mathbb{Z})$ which is shift-invariant and whose Szlenk index is equal to ω^2 .

One more result.

Theorem [Daws + Haydon + Schlumprecht + White (2012)]

There is an isomorphic predual F of $\ell_1(\mathbb{Z})$ which is shift-invariant and whose Szlenk index is equal to ω^2 .

That F is shift-invariant means that F, isomorphically identified with a subspace of $\ell_{\infty}(\mathbb{Z})$, is invariant under the bilateral shift on $\ell_{\infty}(\mathbb{Z})$. Equivalently, $\ell_1(\mathbb{Z})$ is a dual Banach algebra for $\sigma(F^*, F)$.

About Question 1: strange preduals of ℓ_1

Actually, isomorphic preduals of ℓ_1 have universal properties.

(B)

Actually, isomorphic preduals of ℓ_1 have universal properties.

Theorem [Freeman + Odell + Schlumprecht (2011)]

Every Banach space with separable dual embeds into an isomorphic predual of $\ell_1.$

Actually, isomorphic preduals of ℓ_1 have universal properties.

Theorem [Freeman + Odell + Schlumprecht (2011)]

Every Banach space with separable dual embeds into an isomorphic predual of ℓ_1 .

Theorem [Argyros + Freeman + Haydon + Odell + Raikoftsalis + Schlumprecht + Zisimopoulou (2012)]

Every separable reflexive Banach space X with Szlenk index ω (in particular, every uniformly convex space) embeds into an isomorphic predual Z of ℓ_1 with very few operators.

伺い イヨン イヨン

How to distinguish c_0 among the other preduals of ℓ_1 ?

문어 문

How to distinguish c_0 among the other preduals of ℓ_1 ?

It turns out that c_0 can be characterized by unconditionality.

< ⊒ > _ ⊒

How to distinguish c_0 among the other preduals of ℓ_1 ?

It turns out that c_0 can be characterized by unconditionality. Indeed:

Theorem *c*0

Let X be an isomorphic predual of ℓ_1 ; then X is isomorphic to c_0 in the following cases:

How to distinguish c_0 among the other preduals of ℓ_1 ?

It turns out that c_0 can be characterized by unconditionality. Indeed:

Theorem *c*0

Let X be an isomorphic predual of ℓ_1 ; then X is isomorphic to c_0 in the following cases:

1) (Johnson + Zippin, 1972) if X embeds into a quotient of c_0 ;

How to distinguish c_0 among the other preduals of ℓ_1 ?

It turns out that c_0 can be characterized by unconditionality. Indeed:

Theorem c₀

Let X be an isomorphic predual of ℓ_1 ; then X is isomorphic to c_0 in the following cases:

1) (Johnson + Zippin, 1972) if X embeds into a quotient of c_0 ;

2) (Rosenthal, 1983) if X embeds into a space with an unconditional basis;

How to distinguish c_0 among the other preduals of ℓ_1 ?

It turns out that c_0 can be characterized by unconditionality. Indeed:

Theorem c₀

Let X be an isomorphic predual of ℓ_1 ; then X is isomorphic to c_0 in the following cases:

1) (Johnson + Zippin, 1972) if X embeds into a quotient of c_0 ;

2) (Rosenthal, 1983) if X embeds into a space with an unconditional basis;

3) (Ghoussoub + Johnson, 1989) if X embeds into an order continuous Banach lattice.

- 4 清下 - 4 清下

Note that Johnson and Zippin also proved (1974) that:

Every quotient of c_0 is isomorphic to a subspace of c_0 .

In particular, every quotient of c_0 embeds into a space with an unconditional basis.

Of course, every space with an unconditional basis is an order continuous Banach lattice.

Note that Johnson and Zippin also proved (1974) that:

Every quotient of c_0 is isomorphic to a subspace of c_0 .

In particular, every quotient of c_0 embeds into a space with an unconditional basis.

Of course, every space with an unconditional basis is an order continuous Banach lattice.

Rosenthal used a skipped blocking argument and the Grothendieck theorem (every operator $T: \ell_1 \to \ell_2$ is absolutely summing); unconditionality is used to glue the blocks together.

Ghoussoub and Johnson used a localized version of Rosenthal's arguments.

About Question1: Property (u)

Property (u) is a weak form of unconditionality.

ミ▶ ▲ ミ ト ミ つへで

Definition

A Banach space space X has Pełczyński's property (u) if for every weak Cauchy sequence $(x_n)_{n\geq 1}$ in X, there is a weakly unconditional Cauchy series $\sum_{n\geq 1} u_n$ such that $x_n - \sum_{k=1}^n u_k \xrightarrow[n\to\infty]{w} 0$.

Definition

A Banach space space X has Pełczyński's property (u) if for every weak Cauchy sequence $(x_n)_{n\geq 1}$ in X, there is a weakly unconditional Cauchy series $\sum_{n\geq 1} u_n$ such that $x_n - \sum_{k=1}^n u_k \xrightarrow[n\to\infty]{w} 0$.

Then there is a least $K \ge 1$ such that, for every Baire-1 element $x^{**} \in X^{**}$, one can choose, for every $\varepsilon > 0$, a wuC series $\sum_{n\ge 1} u_n$ such that $x^{**} = w^* - \sum_{n=1}^{\infty} u_n$ and:

$$\sup_{\theta_k=\pm 1, n\geq 1} \left\| \sum_{k=1}^n \theta_k u_k \right\| \le (K+\varepsilon) \left\| x^{**} \right\| ,$$

called the constant of property (u) of X.

3

Definition

A Banach space space X has Pełczyński's property (u) if for every weak Cauchy sequence $(x_n)_{n\geq 1}$ in X, there is a weakly unconditional Cauchy series $\sum_{n\geq 1} u_n$ such that $x_n - \sum_{k=1}^n u_k \xrightarrow[n\to\infty]{w} 0$.

Every subspace of a space with property (u) also has property (u).

Definition

A Banach space space X has Pełczyński's property (u) if for every weak Cauchy sequence $(x_n)_{n\geq 1}$ in X, there is a weakly unconditional Cauchy series $\sum_{n\geq 1} u_n$ such that $x_n - \sum_{k=1}^n u_k \xrightarrow[n\to\infty]{w} 0$.

Every subspace of a space with property (u) also has property (u).

Theorem [Tzafriri (1972)]

Every subspace of an order continuous Banach lattice has property (u).

■ → → = → → = = =

Definition

A Banach space space X has Pełczyński's property (u) if for every weak Cauchy sequence $(x_n)_{n\geq 1}$ in X, there is a weakly unconditional Cauchy series $\sum_{n\geq 1} u_n$ such that $x_n - \sum_{k=1}^n u_k \xrightarrow[n\to\infty]{w} 0$.

Every subspace of a space with property (u) also has property (u).

Theorem [Tzafriri (1972)]

Every subspace of an order continuous Banach lattice has property (u).

Hence, all the spaces in the Theorem c_0 have property (u).

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]

Every Banach space M-ideal in its bidual has property (u).

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]

Every Banach space M-ideal in its bidual has property (u).

A Banach space X is *M*-ideal of its bidual if the natural decomposition $X^{***} = X^* \oplus X^{\perp}$ is an ℓ_1 decomposition.

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]

Every Banach space M-ideal in its bidual has property (u).

A Banach space X is *M*-ideal of its bidual if the natural decomposition $X^{***} = X^* \oplus X^{\perp}$ is an ℓ_1 decomposition.

One has:

Theorem [D. Werner (1989) and Gilles + D. Li (1990)]

If X is a predual of ℓ_1 and is isomorphic to a space *M*-ideal of its bidual, then X is isomorphic to c_0 .

▲□→ ▲目→ ▲目→ 目 のへで

Hence the question:

Question [Gilles (1989)]

If X is a predual of ℓ_1 with property (u), is X isomorphic to c_0 ?

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

æ

Theorem [Tzafriri (1972)]

1) Every cyclic Banach space has property (u).

Theorem [Tzafriri (1972)]

- 1) Every cyclic Banach space has property (u).
- 2) Every order bounded Banach lattice is cyclic.

Theorem [Tzafriri (1972)]

1) Every cyclic Banach space has property (u).

2) Every order bounded Banach lattice is cyclic.

So

Sub-question

Is every cyclic predual of ℓ_1 isomorphic to c_0 ?

A Banach space X has the hereditarily Dunford-Pettis property (HDPP) if all its subspaces Y have the Dunford-Pettis property (every w-compact $T: Y \rightarrow Z$ maps wealky convergent sequences into norm convergent ones). Grothendieck showed that c_0 has the (HDPP).

A Banach space X has the hereditarily Dunford-Pettis property (HDPP) if all its subspaces Y have the Dunford-Pettis property (every w-compact $T: Y \rightarrow Z$ maps wealky convergent sequences into norm convergent ones). Grothendieck showed that c_0 has the (HDPP).

Theorem

1) [Cembranos (1987)] A Banach space X has (HDPP) iff it has property (S): every normalized weakly null sequence has a c_0 subsequence.

A Banach space X has the hereditarily Dunford-Pettis property (HDPP) if all its subspaces Y have the Dunford-Pettis property (every w-compact $T: Y \rightarrow Z$ maps wealky convergent sequences into norm convergent ones). Grothendieck showed that c_0 has the (HDPP).

Theorem

 [Cembranos (1987)] A Banach space X has (HDPP) iff it has property (S): every normalized weakly null sequence has a c₀ subsequence.
[Knaust + Odell (1989)] Every Banach space with property (S) has property (u).

A Banach space X has the hereditarily Dunford-Pettis property (HDPP) if all its subspaces Y have the Dunford-Pettis property (every w-compact $T: Y \rightarrow Z$ maps wealky convergent sequences into norm convergent ones). Grothendieck showed that c_0 has the (HDPP).

Theorem

 [Cembranos (1987)] A Banach space X has (HDPP) iff it has property (S): every normalized weakly null sequence has a c₀ subsequence.
[Knaust + Odell (1989)] Every Banach space with property (S) has property (u).

In 1993, Knaust introduced a property, called (FS) (I don't give its definition, but just said that if X has (FS) and X^* is separable, then X has (S)), and proved:
About Question 1: Hereditarily Dunford-Pettis property

A Banach space X has the hereditarily Dunford-Pettis property (HDPP) if all its subspaces Y have the Dunford-Pettis property (every w-compact $T: Y \rightarrow Z$ maps wealky convergent sequences into norm convergent ones). Grothendieck showed that c_0 has the (HDPP).

Theorem

 [Cembranos (1987)] A Banach space X has (HDPP) iff it has property (S): every normalized weakly null sequence has a c₀ subsequence.
[Knaust + Odell (1989)] Every Banach space with property (S) has property (u).

In 1993, Knaust introduced a property, called (FS) (I don't give its definition, but just said that if X has (FS) and X^* is separable, then X has (S)), and proved:

Theorem [Knaust (1993)]

Every predual of ℓ_1 with property (FS) is isomorphic to c_0 .

э

Question 1, particular case: Hereditarily Dunford-Pettis property

So:

Sub-question

Is every predual of ℓ_1 with (HDPP) isomorphic to c_0 ?

Daniel Li Gilles Godefroy, ℓ_1 , et moi; et d'autres ...

3

I cannot finish without state the following:

글에 비밀어

∃ ���

I cannot finish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of ℓ_1 with property (u). Let $d = \text{dist}(X^*, \ell_1)$ and K the constant of property (u), then if

$$Kd^2 < d + 2$$
,

X is isomorphic to c_0 .

э

I cannot finish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of ℓ_1 with property (u). Let $d = \text{dist}(X^*, \ell_1)$ and K the constant of property (u), then if

 $Kd^2 < d + 2$,

X is isomorphic to c_0 .

MARVELLOUS !

э

I cannot finish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of ℓ_1 with property (u). Let $d = \text{dist}(X^*, \ell_1)$ and K the constant of property (u), then if

 $Kd^2 < d + 2$,

X is isomorphic to c_0 .

MARVELLOUS !

With such a result the answer to Question 1 cannot be other than:

"yes"!

3