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Gilles Godefroy and #;1: One of my favourite Gilles's result

Theorem [Gilles (1988)]

A separable Banach space X contains #; if and only if there exists an
equivalent norm ||| . ||| on X and z € X** \ {0} such that :

I+ 2l = [lIxIll + [zl vx € X.
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Gilles Godefroy and #;1: One of my favourite Gilles's result

Theorem [Gilles (1988)]

A separable Banach space X contains #; if and only if there exists an
equivalent norm ||| . ||| on X and z € X** \ {0} such that :

I+ 2l = [lIxIll + [zl vx € X.

Sufficient condition: easy, by local reflexivity and induction.

Now: ball topology !

It is the coarsest topology bx on X for which all closed balls of X are
closed.

Daniel Li Gilles Godefroy, £7, et moi; et d'autres . ..



Gilles Godefroy and #;1: One of my favourite Gilles's result

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains /; if and only if, on the unit ball Bx, the ball
topology by is irreducible.
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Gilles Godefroy and #;1: One of my favourite Gilles's result

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains /; if and only if, on the unit ball Bx, the ball
topology by is irreducible.

A topological space is irreducible if two arbitrary non-empty open sets have
non-empty intersection.

Equivalently here: if Bx is contained in the union of a finite number of closed
balls, then Bx is contained in one of them.

Such a topology is highly non-Hausdorff.

The sufficient part is given by:
Theorem [Gilles + N. Kalton (1989)]
X2l — bx is Hausdorff on Bx.
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Gilles Godefroy, ¢1 and I: two questions

In fall of 1989, Gilles asked me two questions:

Let X be an isomorphic predual of ¢; with Petczyriski's property (u); is X
isomorphic to ¢p?

Let X be a subspace of L! whose unit ball By is compact and locally

convex for the convergence in measure. Is X isomorphic to a subspace of
17

Question 2: answered in 1994 (Gilles + N. Kalton + D. Li, published in
1996)

Question 1: still open.
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About Question 2

It is well known that the topology of convergence in measure 7, is not
locally convex on L, and does not fit well with the weak topology (there
are nets in the unit ball which converge weakly to 0 but to T in measure).
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On the other hand (Kadets + Petczynski, 1962):
X C L1 is reflexive = Tm = norm topology on whole X.

In particular, 7, is locally convex on X and finer than the weak topology.

Now (as easy too see): if X is the o-algebra generated by a measurable
partition, then X = E*(L!) is isometric to #; and on its unit ball Bx, 7,
is equal to the w*-topology of ¢;, so this unit ball is compact and locally
convex for 7, (the same is true for the subspaces Y of X whose unit ball
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About Question 2

It is well known that the topology of convergence in measure 7, is not
locally convex on L, and does not fit well with the weak topology (there
are nets in the unit ball which converge weakly to 0 but to T in measure).

On the other hand (Kadets + Petczynski, 1962):
X C L1 is reflexive = Tm = norm topology on whole X.

In particular, 7, is locally convex on X and finer than the weak topology.

Now (as easy too see): if X is the o-algebra generated by a measurable
partition, then X = E*(L!) is isometric to #; and on its unit ball Bx, 7,
is equal to the w*-topology of ¢;, so this unit ball is compact and locally
convex for 7, (the same is true for the subspaces Y of X whose unit ball
is closed in measure), and weaker than the weak topology.

What about the converse?
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About Question 2

Theorem [Gilles + N. Kalton + D. Li (1996)]

Let X be a subspace of L' with (AP). Then its unit ball Bx is compact
and locally convex for 7, iff for every € > 0 there is a w*-closed subspace
X. of £1 such that dist (X, X.) <1 +e.
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About Question 2

Theorem [Gilles + N. Kalton + D. Li (1996)]

Let X be a subspace of L' with (AP). Then its unit ball Bx is compact
and locally convex for 7, iff for every € > 0 there is a w*-closed subspace
X. of £1 such that dist (X, X.) <1 +e.

Main tool:

Theorem [N. Kalton + D. Werner (1995)]

Let Y be a Banach space with separable dual Y*. If Y has property
(m3):

vi0 =
[limsup ly* + 21| = ly*l| + imsup [z vy* € V<],

then, for all € > 0, there exists a subspace Y. of ¢y such that
dist (Y, Y:) <1l+e.
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About Question 2

In our case, if Bx is compact and locally convex for 7, then
X* = {p € X*; ¢ Tm-continuous}

satisfies (X*)* = X and has (mj).
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Xt = € X*; @, Tm-continuous
® ¥|Bx

satisfies (X*)* = X and has (mj).
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About Question 2

In our case, if Bx is compact and locally convex for 7, then
X* = {p € X*; ¢ Tm-continuous}

satisfies (X*)* = X and has (mj).
We used then:

Theorem [Gilles+ N. Kalton + D. Li (1996)]

Let Z be a subspace of cg with (AP). If Z* is isometric to a subspace of
LY, then, for every ¢ > 0, there exists a w*-closed subspace Y. of /; such
that dist (Z*, Y;) < 1+e.

Uses a skipped blocking argument and a average argument, using the cotype 2
of L', via Khintchine's inequalities.

This is a partial converse of a result of D. Alspach (1979): every quotient
of ¢y is almost isometric to subspaces of ¢.
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About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X, of L' whose unit ball is compact, but not
locally convex in measure.

2) There exists a subspace Xj of L! whose unit ball is compact, and
locally convex in measure, but for every sub-c-algebra ¥ generated by a
measurable partition, one has:

supresy, IIEZF — Flly > 1
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About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X, of L' whose unit ball is compact, but not
locally convex in measure.

2) There exists a subspace Xj of L! whose unit ball is compact, and
locally convex in measure, but for every sub-c-algebra ¥ generated by a
measurable partition, one has:

supresy, IIEZF — Flly > 1

Question. If X is a subspace of L' almost isometric to w*-closed
subspaces of /1, does it exist a o-algebra ¥, generated by a measurable
partition such that, for every ¢ > 0, one has d, (f,E*f) < ¢ for every
f e Bx?

In the 1996's paper, we asserted that the answer is “yes”’, but there is a
gap in the proof.
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Isomorphic preduals of /1 may have strange properties. In 1980, Bourgain
and Delbaen gave a method to construct such peculiar £ spaces. This
construction has been used and improved by several people.
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About Question 1: strange preduals of ¢4

Isomorphic preduals of /1 may have strange properties. In 1980, Bourgain
and Delbaen gave a method to construct such peculiar £ spaces. This
construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of ¢; with
the Radon-Nikodym property and are somewhat reflexive (every infinite
dimensional subspace contains another one which is reflexive and infinite
dimensional).

2) (Alspach, 2000) These spaces have Szlenk index equal to w.

3) (Haydon, 2000) If X is such a space, there is some r € (1, c0) such
that every infinite dimensional subspace of X contains /,.

It won't define the Szlenk index, and | only say that the Szlenk index is
an ordinal and that of ¢ is w, the first infinite ordinal.
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About Question 1: strange preduals of ¢4

By mixing Bourgain-Delbaen’s construction with Gowers-Maurey’s one:

Theorem [Argyros + Haydon (2011)]

There is an isomorphic predual of ¢; which is HI (hereditarily
indecomposable) and has very few operators: every operator has the form
Ald + K, where )\ is a scalar and K a compact operator.
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By mixing Bourgain-Delbaen’s construction with Gowers-Maurey’s one:

Theorem [Argyros + Haydon (2011)]

There is an isomorphic predual of ¢; which is HI (hereditarily
indecomposable) and has very few operators: every operator has the form
Ald + K, where )\ is a scalar and K a compact operator.

Very recently, M. Tarbard (arXiv), a student of R. Haydon, has given new
examples in his thesis. For example:

1) for every k > 1, there are HI ¢; preduals Xy whose Calkin algebra
L(Xi)/K(Xk) is of dimension k (for k > 2, they have few operators, but
not very few);

2) there is a predual of ¢; whose Calkin algebra is isometric, as a Banach
algebra, to ¢1; consequently, it is indecomposable but not hereditarily.
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About Question 1: strange preduals of ¢4

One more result.

Theorem [Daws + Haydon + Schlumprecht + White (2012)]

There is an isomorphic predual F of ¢1(Z) which is shift-invariant and

whose Szlenk index is equal to w?.
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About Question 1: strange preduals of ¢4

One more result.

Theorem [Daws + Haydon + Schlumprecht + White (2012)]

There is an isomorphic predual F of ¢1(Z) which is shift-invariant and

whose Szlenk index is equal to w?.

That F is shift-invariant means that F, isomorphically identified with a
subspace of (., (Z), is invariant under the bilateral shift on ¢, (Z).
Equivalently, ¢1(Z) is a dual Banach algebra for o(F*, F).
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About Question 1: strange preduals of ¢4

Actually, isomorphic preduals of #; have universal properties.

Theorem [Freeman + Odell + Schlumprecht (2011)]

Every Banach space with separable dual embeds into an isomorphic
predual of /;.

Theorem [Argyros + Freeman + Haydon + Odell + Raikoftsalis +

Schlumprecht + Zisimopoulou (2012)]

Every separable reflexive Banach space X with Szlenk index w (in
particular, every uniformly convex space) embeds into an isomorphic
predual Z of ¢; with very few operators.
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It turns out that ¢y can be characterized by unconditionality.
Indeed:

Theorem ¢y

Let X be an isomorphic predual of /1; then X is isomorphic to ¢ in the
following cases:

1) (Johnson + Zippin, 1972) if X embeds into a quotient of cy;

2) (Rosenthal, 1983) if X embeds into a space with an unconditional
basis;

3) (Ghoussoub + Johnson, 1989) if X embeds into an order continuous
Banach lattice.
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About Question 1: motivation

Note that Johnson and Zippin also proved (1974) that:

Every quotient of ¢ is isomorphic to a subspace of ¢.

In particular, every quotient of ¢y embeds into a space with an
unconditional basis.

Of course, every space with an unconditional basis is an order continuous
Banach lattice.
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About Question 1: motivation

Note that Johnson and Zippin also proved (1974) that:

Every quotient of ¢ is isomorphic to a subspace of ¢.

In particular, every quotient of ¢y embeds into a space with an
unconditional basis.

Of course, every space with an unconditional basis is an order continuous
Banach lattice.

Rosenthal used a skipped blocking argument and the Grothendieck theorem
(every operator T: {1 — (> is absolutely summing); unconditionality is used to
glue the blocks together.

Ghoussoub and Johnson used a localized version of Rosenthal’s arguments.
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Definition
A Banach space space X has Petczynski's property (u) if for every weak
Cauchy sequence (x,)n>1 in X, there is a weakly unconditional Cauchy

. n w
series D, up such that x, — >/, uk —=0
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About Questionl: Property (u)

Property (u) is a weak form of unconditionality.

Definition

A Banach space space X has Petczynski's property (u) if for every weak
Cauchy sequence (x,)n>1 in X, there is a weakly unconditional Cauchy

. n w
series D, up such that x, — >/, uk —=0

Then there is a least K > 1 such that, for every Baire-1 element x™ € X™*, one
can choose, for every e > 0, a wuC series Y, u, such that x™ = w*=>""_ u,
and: B

Zﬁkuk + &) [[x™7 |

called the constant of property (u) of X.

= 1/1\1
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About Questionl: Property (u)

Property (u) is a weak form of unconditionality.

Definition

A Banach space space X has Petczynski's property (u) if for every weak
Cauchy sequence (x,)n>1 in X, there is a weakly unconditional Cauchy
series > ., u, such that x, — >} _, ux —— 0.

— n—o0o

Every subspace of a space with property (u) also has property (u).

Theorem [Tzafriri (1972)]

Every subspace of an order continuous Banach lattice has property (u).

Hence, all the spaces in the Theorem ¢, have property (u).
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About Question 1: M-ideals

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]
Every Banach space M-ideal in its bidual has property (u).
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About Question 1: M-ideals

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]
Every Banach space M-ideal in its bidual has property (u).

A Banach space X is M-ideal of its bidual if the natural decomposition
X** = X* @ X' is an ¢1 decomposition.
One has:

Theorem [D. Werner (1989) and Gilles + D. Li (1990)]

If X is a predual of ¢; and is isomorphic to a space M-ideal of its bidual,
then X is isomorphic to ¢.
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Question 1

Hence the question:

Question [Gilles (1989)]
If X is a predual of ¢; with property (u), is X isomorphic to ¢5?
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Question 1, particular case: Cyclic Banach spaces

A Banach space X is said to be cyclic if there is a complete Boolean
algebra B of projections and xg € X such that X =span{Pxp; P € B}.
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1) Every cyclic Banach space has property (u).
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1) Every cyclic Banach space has property (u).
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Daniel Li Gilles Godefroy, £7, et moi; et d'autres . ..



Question 1, particular case: Cyclic Banach spaces

A Banach space X is said to be cyclic if there is a complete Boolean
algebra B of projections and xg € X such that X =span{Pxp; P € B}.

Theorem [Tzafriri (1972)]

1) Every cyclic Banach space has property (u).
2) Every order bounded Banach lattice is cyclic.

So

Sub-question

Is every cyclic predual of ¢; isomorphic to ¢?

Daniel Li Gilles Godefroy, £7, et moi; et d'autres . ..



About Question 1: Hereditarily Dunford-Pettis property

A Banach space X has the hereditarily Dunford-Pettis property (HDPP)
if all its subspaces Y have the Dunford-Pettis property (every w-compact

T: Y — Z maps wealky convergent sequences into norm convergent
ones). Grothendieck showed that ¢y has the (HDPP).
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1) [Cembranos (1987)] A Banach space X has (HDPP) iff it has property
(S): every normalized weakly null sequence has a ¢y subsequence.
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About Question 1: Hereditarily Dunford-Pettis property

A Banach space X has the hereditarily Dunford-Pettis property (HDPP)
if all its subspaces Y have the Dunford-Pettis property (every w-compact

T: Y — Z maps wealky convergent sequences into norm convergent
ones). Grothendieck showed that ¢y has the (HDPP).

1) [Cembranos (1987)] A Banach space X has (HDPP) iff it has property
(S): every normalized weakly null sequence has a ¢y subsequence.
2) [Knaust + Odell (1989)] Every Banach space with property (S) has

property (u).

In 1993, Knaust introduced a property, called (FS) (I don't give its
definition, but just said that if X has (FS) and X* is separable, then X
has (S)), and proved:
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About Question 1: Hereditarily Dunford-Pettis property

A Banach space X has the hereditarily Dunford-Pettis property (HDPP)
if all its subspaces Y have the Dunford-Pettis property (every w-compact

T: Y — Z maps wealky convergent sequences into norm convergent
ones). Grothendieck showed that ¢y has the (HDPP).

1) [Cembranos (1987)] A Banach space X has (HDPP) iff it has property
(S): every normalized weakly null sequence has a ¢y subsequence.
2) [Knaust + Odell (1989)] Every Banach space with property (S) has

property (u).

In 1993, Knaust introduced a property, called (FS) (I don't give its
definition, but just said that if X has (FS) and X* is separable, then X
has (S)), and proved:

Theorem [Knaust (1993)]
Every predual of ¢; with property (FS) is isomorphic to co.

Daniel Li Gilles Godefroy, £7, et moi; et d'autres . ..



Question 1, particular case: Hereditarily Dunford-Pettis

property

So:

Sub-question

Is every predual of ¢; with (HDPP) isomorphic to ¢5?
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| cannot finish without state the following:
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| cannot finish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of ¢; with property (u). Let
d = dist (X*,¢1) and K the constant of property (u), then if

Kd?> < d+2,

X is isomorphic to ¢.
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MARVELLOUS !
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| cannot finish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of ¢; with property (u). Let
d = dist (X*,¢1) and K the constant of property (u), then if

Kd?> < d+2,

X is isomorphic to ¢.

MARVELLOUS !

With such a result the answer to Question 1 cannot be other than:

“yeSV 'l
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