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Gilles Godefroy and `1: One of my favourite Gilles's result

Theorem [Gilles (1988)]

A separable Banach space X contains `1 if and only if there exists an
equivalent norm |‖ . ‖| on X and z ∈ X ∗∗ \ {0} such that :

|‖x + z‖| = |‖x‖|+ |‖z‖| ∀x ∈ X .

Su�cient condition: easy, by local re�exivity and induction.

Now: ball topology !

It is the coarsest topology bX on X for which all closed balls of X are
closed.
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Gilles Godefroy and `1: One of my favourite Gilles's result

The previous result gives the necessary part of:

Theorem [Gilles + N. Kalton (1989)]

A Banach space X contains `1 if and only if, on the unit ball BX , the ball
topology bX is irreducible.

A topological space is irreducible if two arbitrary non-empty open sets have
non-empty intersection.
Equivalently here: if BX is contained in the union of a �nite number of closed
balls, then BX is contained in one of them.

Such a topology is highly non-Hausdor�.

The su�cient part is given by:

Theorem [Gilles + N. Kalton (1989)]

X 6⊇ `1 =⇒ bX is Hausdor� on BX .
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Gilles Godefroy, `1 and I: two questions

In fall of 1989, Gilles asked me two questions:

Question 1

Let X be an isomorphic predual of `1 with Peªczy«ski's property (u); is X
isomorphic to c0?

Question 2

Let X be a subspace of L1 whose unit ball BX is compact and locally
convex for the convergence in measure. Is X isomorphic to a subspace of
`1?

Question 2: answered in 1994 (Gilles + N. Kalton + D. Li, published in
1996)

Question 1: still open.
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About Question 2

It is well known that the topology of convergence in measure τm is not
locally convex on L1, and does not �t well with the weak topology (there
are nets in the unit ball which converge weakly to 0 but to 1I in measure).

On the other hand (Kadets + Peªczy«ski, 1962):

X ⊆ L1 is re�exive ⇐⇒ τm = norm topology on whole X .

In particular, τm is locally convex on X and �ner than the weak topology.

Now (as easy too see): if Σ is the σ-algebra generated by a measurable
partition, then X = EΣ(L1) is isometric to `1 and on its unit ball BX , τm
is equal to the w∗-topology of `1, so this unit ball is compact and locally
convex for τm (the same is true for the subspaces Y of X whose unit ball
is closed in measure), and weaker than the weak topology.

What about the converse?
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About Question 2

Theorem [Gilles + N. Kalton + D. Li (1996)]

Let X be a subspace of L1 with (AP). Then its unit ball BX is compact
and locally convex for τm i� for every ε > 0 there is a w∗-closed subspace
Xε of `1 such that dist (X ,Xε) ≤ 1 + ε.

Main tool:

Theorem [N. Kalton + D. Werner (1995)]

Let Y be a Banach space with separable dual Y ∗. If Y has property
(m∗1):

y∗n
w∗

−−−→ 0 =⇒[
lim sup ‖y∗ + y∗n ‖ = ‖y∗‖+ lim sup ‖y∗n ‖ ,∀y∗ ∈ Y ∗

]
,

then, for all ε > 0, there exists a subspace Yε of c0 such that
dist (Y ,Yε) ≤ 1 + ε.
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About Question 2

In our case, if BX is compact and locally convex for τm, then

X ] = {ϕ ∈ X ∗ ; ϕ|BX
τm-continuous}

satis�es (X ])∗ = X and has (m∗1).

We used then:

Theorem [Gilles+ N. Kalton + D. Li (1996)]

Let Z be a subspace of c0 with (AP). If Z∗ is isometric to a subspace of
L1, then, for every ε > 0, there exists a w∗-closed subspace Yε of `1 such
that dist (Z∗,Yε) ≤ 1 + ε.

Uses a skipped blocking argument and a average argument, using the cotype 2

of L1, via Khintchine's inequalities.

This is a partial converse of a result of D. Alspach (1979): every quotient
of c0 is almost isometric to subspaces of c0.
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About Question 2: counterexample

However:

Examples [Gilles + N. Kalton + D. Li (1996 and 2000)]

1) There exists a subspace X0 of L1 whose unit ball is compact, but not
locally convex in measure.

2) There exists a subspace X1 of L1 whose unit ball is compact, and
locally convex in measure, but for every sub-σ-algebra Σ generated by a
measurable partition, one has:

supf∈BX1
‖EΣf − f ‖1 ≥ 1 .

Question. If X is a subspace of L1 almost isometric to w∗-closed
subspaces of `1, does it exist a σ-algebra Σ, generated by a measurable
partition such that, for every ε > 0, one has dτm(f ,EΣf ) ≤ ε for every
f ∈ BX ?

In the 1996's paper, we asserted that the answer is �yes�, but there is a
gap in the proof.
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About Question 1: strange preduals of `1

Isomorphic preduals of `1 may have strange properties. In 1980, Bourgain
and Delbaen gave a method to construct such peculiar L∞ spaces. This
construction has been used and improved by several people. For example:

Bourgain-Delbaen's spaces

1) (Bourgain + Delbaen, 1980) There are isomorphic preduals of `1 with
the Radon-Nikodým property and are somewhat re�exive (every in�nite

dimensional subspace contains another one which is re�exive and in�nite

dimensional).

2) (Alspach, 2000) These spaces have Szlenk index equal to ω.

3) (Haydon, 2000) If X is such a space, there is some r ∈ (1,∞) such
that every in�nite dimensional subspace of X contains `r .

It won't de�ne the Szlenk index, and I only say that the Szlenk index is
an ordinal and that of c0 is ω, the �rst in�nite ordinal.
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About Question 1: strange preduals of `1

By mixing Bourgain-Delbaen's construction with Gowers-Maurey's one:

Theorem [Argyros + Haydon (2011)]

There is an isomorphic predual of `1 which is HI (hereditarily
indecomposable) and has very few operators: every operator has the form
λ Id + K , where λ is a scalar and K a compact operator.

Very recently, M. Tarbard (arXiv), a student of R. Haydon, has given new
examples in his thesis. For example:
1) for every k ≥ 1, there are HI `1 preduals Xk whose Calkin algebra
L(Xk)/K(Xk) is of dimension k (for k ≥ 2, they have few operators, but
not very few);
2) there is a predual of `1 whose Calkin algebra is isometric, as a Banach
algebra, to `1; consequently, it is indecomposable but not hereditarily.
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About Question 1: strange preduals of `1

One more result.

Theorem [Daws + Haydon + Schlumprecht + White (2012)]

There is an isomorphic predual F of `1(Z) which is shift-invariant and
whose Szlenk index is equal to ω2.

That F is shift-invariant means that F , isomorphically identi�ed with a
subspace of `∞(Z), is invariant under the bilateral shift on `∞(Z).
Equivalently, `1(Z) is a dual Banach algebra for σ(F ∗,F ).
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About Question 1: strange preduals of `1

Actually, isomorphic preduals of `1 have universal properties.

Theorem [Freeman + Odell + Schlumprecht (2011)]

Every Banach space with separable dual embeds into an isomorphic
predual of `1.

Theorem [Argyros + Freeman + Haydon + Odell + Raikoftsalis +
Schlumprecht + Zisimopoulou (2012)]

Every separable re�exive Banach space X with Szlenk index ω (in
particular, every uniformly convex space) embeds into an isomorphic
predual Z of `1 with very few operators.
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About Question 1: motivation

Question

How to distinguish c0 among the other preduals of `1 ?

It turns out that c0 can be characterized by unconditionality.

Indeed:

Theorem c0

Let X be an isomorphic predual of `1; then X is isomorphic to c0 in the
following cases:

1) (Johnson + Zippin, 1972) if X embeds into a quotient of c0;

2) (Rosenthal, 1983) if X embeds into a space with an unconditional
basis;

3) (Ghoussoub + Johnson, 1989) if X embeds into an order continuous
Banach lattice.
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About Question 1: motivation

Note that Johnson and Zippin also proved (1974) that:

Every quotient of c0 is isomorphic to a subspace of c0.

In particular, every quotient of c0 embeds into a space with an
unconditional basis.

Of course, every space with an unconditional basis is an order continuous
Banach lattice.

Rosenthal used a skipped blocking argument and the Grothendieck theorem
(every operator T : `1 → `2 is absolutely summing); unconditionality is used to
glue the blocks together.

Ghoussoub and Johnson used a localized version of Rosenthal's arguments.
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About Question1: Property (u)

Property (u) is a weak form of unconditionality.

De�nition

A Banach space space X has Peªczy«ski's property (u) if for every weak
Cauchy sequence (xn)n≥1 in X , there is a weakly unconditional Cauchy

series
∑

n≥1 un such that xn −
∑n

k=1 uk
w−−−→

n→∞
0.

Every subspace of a space with property (u) also has property (u).

Theorem [Tzafriri (1972)]

Every subspace of an order continuous Banach lattice has property (u).

Hence, all the spaces in the Theorem c0 have property (u).
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Then there is a least K ≥ 1 such that, for every Baire-1 element x∗∗ ∈ X ∗∗, one
can choose, for every ε > 0, a wuC series

∑
n≥1 un such that x∗∗ = w∗−

∑∞
n=1

un
and:

sup
θk=±1,n≥1

∥∥∥∥ n∑
k=1

θkuk

∥∥∥∥ ≤ (K + ε) ‖x∗∗‖ ,

called the constant of property (u) of X .
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About Question 1: M-ideals

Another class of spaces with property (u) is given by:

Theorem [Gilles + D. Li (1989)]

Every Banach space M-ideal in its bidual has property (u).

A Banach space X is M-ideal of its bidual if the natural decomposition
X ∗∗∗ = X ∗ ⊕ X⊥ is an `1 decomposition.

One has:

Theorem [D. Werner (1989) and Gilles + D. Li (1990)]

If X is a predual of `1 and is isomorphic to a space M-ideal of its bidual,
then X is isomorphic to c0.
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Question 1

Hence the question:

Question [Gilles (1989)]

If X is a predual of `1 with property (u), is X isomorphic to c0?
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Question 1, particular case: Cyclic Banach spaces

A Banach space X is said to be cyclic if there is a complete Boolean
algebra B of projections and x0 ∈ X such that X = span {Px0 ; P ∈ B}.

Theorem [Tzafriri (1972)]

1) Every cyclic Banach space has property (u).
2) Every order bounded Banach lattice is cyclic.

So

Sub-question

Is every cyclic predual of `1 isomorphic to c0?
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About Question 1: Hereditarily Dunford-Pettis property

A Banach space X has the hereditarily Dunford-Pettis property (HDPP)
if all its subspaces Y have the Dunford-Pettis property (every w -compact
T : Y → Z maps wealky convergent sequences into norm convergent
ones). Grothendieck showed that c0 has the (HDPP).

Theorem

1) [Cembranos (1987)] A Banach space X has (HDPP) i� it has property
(S): every normalized weakly null sequence has a c0 subsequence.
2) [Knaust + Odell (1989)] Every Banach space with property (S) has
property (u).

In 1993, Knaust introduced a property, called (FS) (I don't give its
de�nition, but just said that if X has (FS) and X ∗ is separable, then X
has (S)), and proved:

Theorem [Knaust (1993)]

Every predual of `1 with property (FS) is isomorphic to c0.
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Question 1, particular case: Hereditarily Dunford-Pettis

property

So:

Sub-question

Is every predual of `1 with (HDPP) isomorphic to c0?
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The end

I cannot �nish without state the following:

Theorem [Gilles+ N. Kalton + P. D. Saphar (1993)]

Let X be an isomorphic predual of `1 with property (u). Let
d = dist (X ∗, `1) and K the constant of property (u), then if

Kd2 < d + 2 ,

X is isomorphic to c0.

MARVELLOUS !

With such a result the answer to Question 1 cannot be other than:

�yes�!
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